Реферат: Исследование совместного электровосстановление гадолиния и криолита в галогенидных расплавах

Выводы ……………………………….……………………….……………...52

Литература …………………….…….……………………….……………....53

ВВЕДЕНИЕ.

Судя по последним публикациям, нынче довольно трудно отметить те стороны жизни, где бы не находили применение редкоземельные элементы. Эти металлы и их сплавы обычно извлекаются из хлоридных и фторидных систем. Соответственно существует достаточно большое количество работ по хлоридным расплавам, однако по хлоридно-фторидным и фторидным системам, особенно по многокомпонентным фторидным расплавленным солям опубликовано довольно ограниченное число работ. [1]

На основе РЗМ получают многие уникальные материалы, которые находят широкое применение в различных областях науки и техники. Например, РЗМ используют как добавки к стали и в сплавах с другими металлами, в производстве материалов, адсорбирующих водород (например, LaNi5 ) , как добавки к ядерным материалам, в качестве пирофорных материалов, в специальной керамике, оптических стеклах (стекла для TV-экранов), в производстве катализаторов для утилизации выхлопных газов, а также в получении магнитных материалов (например (Nd1-x Dyx )15 Fe77 B8 или (Nd1-x Dyx )15 Fe76 B8 ) и так далее.

Перечисленное выше – лишь небольшая часть из списка областей применения РЗМ. Развитие высоких технологий все более и более вовлекает использование РЗМ, степень чистоты которых должна быть очень высока. В этом отношении не будет преувеличением отнести РЗЭ к материалам XXI века.

Перспективным способом получения чистых РЗМ и их сплавов с другими металлами является электролиз расплавленных солей РЗЭ, а также их смесей. Для эффективного использования электролитического метода получения РЗМ необходимо располагать надежной информацией об электрохимическом поведении комплексов, образуемых ионами РЗЭ в расплавах, а также химических реакциях, сопровождающих процессы электроосаждения. Поэтому является необходимым выяснение механизма электровосстановления комплексных ионов РЗЭ, в частности совместного электровосстановления гадолиния и криолита в галогенидных расплавах.

Глава I.

Строение и электрохимическое поведение расплавленных галогенидных систем, содержащих гадолиний и алюминий.

1.1.1. Строение индивидуального расплава трихлорида

гадолиния.

Кристаллические хлориды элементов от лантана до европия, включая гадолиний, имеют гексагональную решетку, а от диспрозия до лютеция (также и хлорид иттрия),- моноклинную. Температура плавления хлоридов РЗЭ постепенно снижается от лантана до диспрозия, а затем снова возрастает до лютеция; летучесть хлоридов увеличивается с возрастанием порядкового номера элемента, т.е. с увеличением ионного радиуса.

Безводные трихлориды очень гигроскопичны и расплываются на воздухе. Хорошо растворяются в воде и спирте. Поглощают NH3 , выделяя теплоту и образуя аммиакаты LnCl3 . n NH3 . Заслуживает внимания тот факт, что монокристалл GdCl3 при низких температурах становится ферромагнетиком при 2,2˚К [2]. В данной работе отмечается, что в ряду лантаноидов трихлориды от La до Gd включительно изоструктурны (гексагональная типа UCl3 ). Здесь же отмечается, что GdCl3 – вещество с высокой температурой плавления (602˚С), в вакууме при высокой температуре летуче, что подтверждается данными по давлению паров [3].

Под строением ионного расплава понимают состав и взаимное расположение частиц, из которых он состоит. Первые выводы о строении ионных расплавов были сделаны на основании изучения их физико-химических свойств. Значительный прогресс в наших представлениях о строении ионных расплавов был достигнут в результате рентгеноструктурных и спектроскопических исследований. Вопреки прежним положениям, в соответствии с которыми жидкости вообще и ионные расплавы в частности считались отдаленными аналогами газов, а из рентгеновских исследований вытекает, что их нужно рассматривать как аналоги твердых кристаллических структур.

Однако если в структуре твердых кристаллов трихлорида гадолиния имеются как ближний, так и дальний порядок во взаимном расположении частиц, то в ионном расплаве сохраняется лишь ближний порядок. При плавлении кристаллов этого вещества дальний порядок разрушается. Рентгеновские исследования [4] несколько неожиданно показали уменьшение межионных расстояний в этом случае. Данный факт объясняется тем, что увеличение объема ионного вещества при его плавлении происходит не за счет возрастания параметров «кристаллической решетки», а «дефектов» в расплавленном ионном кристалле. Такое состояние ионного вещества называется квазикристаллическим. К тому же, по сравнению с твердым GdCl3 , ионный расплав трихлорида гадолиния характеризуется большими свободными объемами. В работе [5] отмечается, что в расплавленном GdCl3 в качестве структурных единиц существуют также кластерные димеры и более полимеризованные комплексные анионы.

Итак, на основании рентгенографических исследований [6] структуры расплавленного GdCl3 можно сделать следующие выводы:

1. расстояния между разноименными ионами меньше, а между одноименными больше в солевом расплаве, чем в кристаллическом трихлориде гадолиния;

2. координационное число в расплаве ниже, чем в твердом GdCl3 ;

3. в высокой степени сохраняется ближний порядок во взаимном расположении частиц.

На основании всего сказанного можно говорить о следующих составных слагающих ионного расплава трихлорида гадолиния: разноименно заряженные ионы (Gd3+ , Cl- ), недиссоциированные молекулы, ассоциаты (например Gd2 Cl6 ), свободные объемы (дислокации, дырки).

1.1.2. Строение растворов расплава трихлорида гадолиния в

хлоридах щелочных металлов

Изучение взаимодействия хлоридов РЗМ с хлоридами щелочных металлов представляет большой интерес для характеристики расплава, кроме того, чистые хлориды РЗМ и их смеси с хлоридами щелочных металлов являются одними из исходных соединений для получения редкоземельных металлов высокой чистоты.

В расплавленном трихлориде гадолиния и его смесях с хлоридами щелочных металлов образуются прочные комплексные группировки с большим числом аддентов, что подтверждается различными методами исследований.

Например, для изучения комплексообразования РЗЭ в солевых хлоридных расплавах применены методы изоморфной сокристаллизации и ионного обмена [7]. В данной работе исследованы хлоридные расплавы, содержащие микроконцентрации РЗЭ.

Из диаграмм состояния бинарных систем типа MIII Cl3 - MI Cl, где MIII – РЗЭ; MI – щелочной металл, следует, что все хлориды РЗЭ образуют конгруэнтные либо инконгруэнтные соединения с хлоридами K, Rb, Cs. Для хлорида натрия такие соединения образуют РЗЭ, начиная с самария.

Образование анионных хлоридных комплексов лантаноидов в расплавах констатируется также путем изучения ИК – спектров при температуре 400 – 800 ˚С. при этом хлориды лантаноидов в расплавленной эвтектике LiCl – NaCl – KCl в области 0,8 – 2,6 µ имеют характеристические полосы поглощения, найденные в расплавах, соответствующих нитратным комплексам.

Соединения типа KLnCl4 существуют в расплаве и в парообразном состоянии, что показано тензометрическими исследованиями и подтверждено масс-спектроскопией.

Интересна работа японских ученых A.Matsuoka и др. [8], в которой при помощи Раман-спектроскопии и молекулярно-динамического моделирования были изучены структуры систем GdCl3 – ACl (A – Li, K, Na) . В результате найдено, что октаэдрические комплексные анионы GdCl6 3- не соединены друг с другом в расплавах с концентрацией GdCl3 менее 25 мол.%, за исключением системы GdCl3 – LiCl.

В работе [9] исследованы системы GdCl3 – NaCl GdCl3 – KCl . В первом случае в системе образуется инконгруэнтно плавящееся химическое соединение Na3 GdCl6 . Перитектическая точка отвечает 30 % GdCl3 и температуре 486˚С. в случае системы GdCl3 – KCl образуется два конгруэнтно и одно инконгруэнтно плавящихся соединения. Соединение KGd3 Cl10 плавится конгруэнтно при 580˚С. Соединение K2 Gd Cl5 плавится инконгруентно при 542˚С. Конгруэнтно плавящееся соединение K3 GdCl6 характеризуется температурой плавления 825˚С и имеет полиморфное превращение при 380˚С.

Интересно отметтить работу японских ученых Y.Katayama, R.Hagiwara и Y.Ito [31], которые исследовали образование оксихлоридов и оксидов РЗЭ в эвтектическом расплаве LiCl – KCl , содержащем исследуемый РЗЭ (III) и оксид лития. Отмечено, что когда к расплаву, содержащему 1 мол.% трихлорида гадолиния добавили 0,5 мол.% хлорида лития, наблюдалось осаждение лишь GdOCl . Дальнейшее добавление Li2 О (~1 мол.%) дает осаждение Gd2 O3 и GdOCl.


1.1.3. Строение растворов расплава трихлорида гадолиния в

хлоридно-фторидных расплавах

Как указывалось в работе [10], при введении в хлоридный расплав, содержащий ионы Gd3+ , фторид-иона происходит последовательное замещение хлорид-иона фторид-ионом во внешней координации. При большом избытке фтора (более чем десятикратном) формируется чисто фторидный комплекс, т. е. Происходит полное вытеснение хлора из внешнесферной координации.

Итак, при малых концентрациях фторид-иона имеет место реакция:

GdCl6 3- + xF- → [GdCl6-x Fx ]3- + xCl- ,

то есть при х<6.

К-во Просмотров: 357
Бесплатно скачать Реферат: Исследование совместного электровосстановление гадолиния и криолита в галогенидных расплавах