Реферат: История развития науки о резании древесины
Анализируя книгу С.А. Воскресенского по резанию древесины, Е.Г. Ивановский писал [8], что применение только одного механико-математического метода сдерживает развитие науки о резании. Резание древесины есть одно из самых сложных физических явлений. Именно так надо подходить к его изучению. Такое понимание метода исследования не предполагает открытия новых физических законов, но требует выявления характера действия известных законов при резании. Начала механики материалов помогают выявить ряд закономерностей резания, но не все, и поэтому нельзя ограничиваться только ими.
Линейная зависимость силы резания от толщины срезаемого слоя получена также в исследованиях Е. Кивимаа [9]. Исследования показали, что ни одна из кривых, будучи продлена, не проходит через начало координат, и все кривые отсекают некоторую положительную ординату. Из этого делается вывод, что усилие, расходуемое на резание древесины, расходуется на две части. Одна часть расходуется собственно на резание и остается постоянной при изменении толщины среза. Другая часть усилия резания расходуется на деформирование срезаемых слоев передней поверхностью лезвия и зависит от толщины срезаемого слоя.
Так Е. Кивимаа поделил силу резания на две части, одна из которых приложена к режущей кромке лезвия и производит вальцевание поверхности резания и перерезание или разделение волокон древесины, а другая – приложена к передней поверхности лезвия и производит сжатие срезаемого слоя древесины. Для единичной силы резания шириной 1 мм сила резания выражается формулой
Fx 1 = Fс + Ка.
Если единичную силу резания поделить на соответствующее ей значение толщины срезаемого слоя а , то получится значение удельной силы резания, количественно равное удельной работе резания.
В работах А.Л. Бершадского [6, 7, 10] удельная работа резания древесины выражалась следующей формулой:
, (5)
где К' – удельная работа резания при толщине срезаемого слоя 1 мм;
m – коэффициент, характеризующий интенсивность роста удельной работы резания.
Эта формула получена путем обработки экспериментальных данных в логарифмических осях координат. Она показывает, что удельная работа резания убывает с ростом толщины срезаемого слоя. Эта формула оказалась удобной для практических расчетов и широко использовалась до 60-х годов. Однако такая формула затрудняла определение радиальной составляющей полной силы резания.
Радиальная сила (сила отжима) определялась по формуле:
Fz = ±mFx , (6)
где m – коэффициент, зависимый от остроты режущей кромки лезвия и толщины срезаемого слоя [11, 12]. Значение m изменяется в пределах m = 0,1- 1,0.
Исследования по резанию древесины и древесных материалов в нашей стране ведут все высшие учебные заведения лесопромышленного профиля, а также отраслевые научно-исследовательские институты (ЦНИИМОД, г. Архангельск; ЦНИИМЭ, г. Химки Московской обл.; ВНИИДрев, г. Балабаново Калужской обл.; СибНИИЛП, г. Красноярск).
Резание древесины – сложный процесс. Его сложность обусловила появление разных направлений в развитии теории резания этого материала.
В итоге научных дискуссий по теории резания древесины, состоявшихся в Ленинграде (1952 г.) и в Москве (1953 г.), было установлено, что уже в то время наука о резании древесины развивалась по трем направлениям.
Первое направление применяет метод механико-математического анализа процесса резания. Это школа И.А. Тиме, М.А. Дешевого, С.А. Воскресенского. Ученые этой школы переносят методы науки о сопротивлении материалов на анализ действия сил и поведения стружки в процессе резания древесины.
Второе направление развивает физическую теорию резания древесины. Процесс резания рассматривается как физический. Изучаются прежде всего процессы упругого и остаточного деформирования древесины, трения на молекулярном уровне, влияние на эти процессы скорости резания. Это направление представлено школой В.Д. Кузнецова и Е.Г. Ивановского.
Третье направление использует физико-технологический метод, математически обобщающий экспериментальные данные процессов резания в эмпирические формулы, пригодные для практических расчетов. Формулы объединяют физические и технологические параметры. Это школа А.Л. Бершадского.
Между указанными тремя теориями резания нельзя провести четких границ. Они части одной теории, дополняющие и обогащающие друг друга, объединенные единством цели.
Научные труды основоположника науки о резании древесины И.А. Тиме дали возможность целой плеяде русских ученых (П.А. Афанасьеву, К.А. Зворыкину, А.Н. Челюскину, Я.Г. Усачеву, М.А. Дешевому, А.Л. Бершадскому, А.Э. Грубе, С.А. Воскресенскому, Е.Г. Ивановскому, А.Е. Золотареву, И.П. Лапину, Ф.М. Манжосу, В.С. Рыбалко и многим другим) создать отечественную российскую школу обработки древесины резанием. Эта школа занимает сейчас ведущее место в мире.
О взаимосвязи сил, действующих по контактным поверхностям лезвия. Изучая процесс резания древесины, в 1934 г. М.А. Дешевой высказал предположение о независимости действия сил по обе стороны от плоскости резания. В 1945 г. А.М. Розенберг в исследовании процесса фрезерования металлов, а в 1955 г. С.А. Воскресенский в теоретических исследованиях процесса резания древесины делают предположения, что процессы, происходящие по передней поверхности лезвия, не влияют на величину сил по задней поверхности.
Впервые гипотеза о независимости сил по задней поверхности от толщины срезаемого слоя была проверена Н.Н. Зоревым в 1952 г. при резании стали. Было показано, что при увеличении толщины срезаемого слоя от 0,05 мм до 0,55 мм силы резания на задней поверхности почти не изменяются. "Природа сил, – отмечает Н.Н. Зорев [13], – действующих по передней и задней поверхностям, различна и поэтому большинство факторов различно влияют на величину этих сил. Например, передний угол и толщина среза сильно влияют на силы, действующие на передней поверхности, но слабо влияют на силы, действующие на задней поверхности. Ширина контакта задней поверхности слабо влияет на силы, действующие на передней поверхности, но сильно влияет на силы, действующие на задней поверхности."
В 1953 г. М.Н. Ларин [14], изучая характер износа резцов при различных задних углах и толщинах срезаемых слоев, пришел к выводу, что оптимальное значение заднего угла связано с толщиной срезаемого слоя и определяется по формуле:
,
где С – постоянная величина: С = 0,13 при обработке стали, чугуна, сплавов; С= 0,18 при обработке пластмасс;
а max – толщина срезаемого слоя, мм;
К – коэффициент.
"Таким образом, – пишет М.Н. Ларин, – многочисленными опытами советских исследователей установлено, что главным фактором, влияющим на величину оптимального заднего угла, является толщина среза стружки."
В 1961 г., рассматривая вопрос о коэффициенте затупления, А.Л. Бершадский [15] излагает методику обработки экспериментальных данных Е. Кивимаа, В.П. Бухтиярова и приводит значения коэффициентов затупления по передней a rп и задней a rз поверхностям в зависимости от времени работы лезвия Т :
Т , ч | 0 | 1 | 2 | 3 | 4 | 5 | 6 |
a rп | 1,0 | 1,05 | 1,1 | 1,15 | 1,2 | 1,25 | 1,3 |
a rз | 1,0 | 1,25 | 1,45 | 1,60 | 1,75 | 1,85 | 2,0 |
Затупление режущей кромки, оказывающее сильное влияние на работу задней поверхности, оказывается, влияет, хотя и незначительно, на работу передней поверхности.
Позднее А.Л. Бершадский отказался от результатов проведенных исследований, но факт существования такой зависимости остается.