Реферат: История тригонометрии в формулах и аксиомах
Тригонометрические функции произвольного угла
Пусть в прямоугольной системе координат x0y задан радиус-вектор образующий с положительным направлением оси 0 x угол a. Будем считать, что ось 0 x – начальная сторона, а вектор - конечная сторона угла a. Проекция вектора на координатные оси соответственно обозначим ax и ay .
Можно показать, что отношения где а – длина вектора , зависят только от
величины угла a и не зависят от длины вектора . Поэтому эти отношения можно рассматривать как функции произвольного угла a.
Синусом угла a,образованного осью 0 x и произвольным радиусом-вектором , называется отношение проекции этого вектора на ось 0y к его длине:
y
A
x
Рис. 6.
Если не указано сколько оборотов совершил вектор вокруг точки 0, то положение вектора определяет угол с точностью до целого оборота, т.е углу с начальной стороной 0 x и конечной стороной соответствует бесчисленное множество углов, которые выражаются формулой
360°·n+a, где n=0; ±1; ±2; ±3; ±4; …
и sin (a+360°· n)=sin a
Длина радиуса-вектора всегда число положительное. Проекция его на координатные оси величины алгебраические и в зависимости от координатных четвертей имеют следующие знаки:
В I четверти ax >0; ay >0;
Во II четверти ax <0; ay >0;
В III четверти ax <0; ay <0;
В IV четверти ax >0; ay <0/
График функции y=sinx
До сих пор аргументами тригонометрических функций рассматривались именованные величины – углы (дуги), измеренные в градусах или радианах. Значения тригонометрических функций, как отношения отрезков, являются абстрактными величинами (числами). При изучении свойств тригонометрических функций приходится сравнивать изменения функции в связи с изменениями аргумента, а сравнивать можно только однородные или, что еще лучше, абстрактные величины.
Кроме того, введение тригонометрических функций от абстрактного аргумента дает возможность применять эти функции в различных вопросах математики, физики, техники и т.д.
Вместо именованного значения аргумента тригонометрических функций в x (радианов) будем рассматривать абстрактное числогде r обозначает радианы, ии по определению принять что
sinx , где x – абстрактное число, равен sinx , где x измерен в радианах.
Тригонометрические функции являются периодическими, то есть существует число а, отличное от 0, такое, что при любом целом nтождественно выполняется равенство:
f(x+na)=f(x), n=0; ± 1; ± 2 ...
Число а называется периодом функции. Период функции sinx равен 2p. Для нее имеет место формула:
sin ( x +2 p n )= sinx , где n=0; ± 1; ± 2 ...
График функции y=sinx называют синусоидой. Для построения графика можно взять значения аргумента x с определенным интервалом и составить таблицу значений y=sinx , соответствующих выбранным значениям x , а затем по точкам, как это часто делается в алгебре, построить график.
Строим в системе координат x1 01 y1 единичную окружность R=1 с центром 01 на оси абсцисс x1 . Дугу этой окружности начиная от точки начиная от точки оси абсцисс x1 =+1, делим на n равных частей:
Затем строим вторую систему координат x0 y , ось которой 0 x совпадает с осью 0 1 x1 , но сначало координат 0 1 (x 1 =0 ) и 0 (x=0 ) у етих систем различные. В новой системе координат отрезок оси абсцисс от x=0 до x=2 p делим на n равных частей: Из точек деления окружности проводим прямые параллельные оси 0 x , а из точек деления отрезка [0, 2 p ] проводим прямые, перпендикулярные этой осм. Точки пересечения соответствующих прямых будут точками графика y=sinx , так как ординаты этихточек равны значениям синуса, соответствующим значениям аргумента в точках деления отрезка [0, 2 p ].
Рис.8.
Некоторые свойства функции y=sinx