Реферат: Измерение случайных процессов

Поскольку измерение представляет собой процедуру нахож­дения величины опытным путем с помощью специальных техни­ческих средств, реализующих алгоритм, включающий в себя операцию сравнения с известной величиной, в статических изме­рениях должна применяться мера, воспроизводящая известную величину.

Типовые алгоритмы измерений вероятностных характеристик случайных процессов, различающиеся способом применения ме­ры в процессе измерений, представляются в следующем виде:

q* [X (t )]= KSd g [X (t )]; (4)

q* [X (t )]= Sd Kg [X (t )]; (5)

q* [X (t )]= Sd gK [X (t )]; (6)

где Sd оператор усреднения; ʗ оператор сравнения;

q* [X (t)]—результат измерения характеристики q [X (t )].

Данные алгоритмы различаются порядком выполнения опе­раций. Операция сравнения с образцовой мерой (К ) может быть заключительной [см. (4)], выполняться после реализации оператора g, но до усреднения [см. (5)] и, наконец, быть началь­ной [см. (6)]. Соответствующие обобщенные структурные схе­мы средств измерений значений вероятностных характеристик представлены на рис. 2 .

На этих рисунках для обозначения блоков, реализующих операторы, входящие в выражения (4) — (6), используют­ся те же обозначения. Так, g устройство, выполняющее пре­образование, лежащее в основе определения вероятностной ха­рактеристики q; Sd устройство усреднения (сумматор или ин­тегратор); ʗ компаратор (сравнивающее устройство), а ̗ мера, с помощью которой формируется известная величина (q., g., x . )

Представленное на рис. 2 , а средство измерений реализует следующую процедуру: на вход поступает совокупность реализа­ций {x i ( t ) } (при использовании усреднения по времени — одна реализация x i , ( t ) -, на выходе узла g имеем совокупность преоб­разованных реализации {g[x i (t )]}; после усреднения получаем величину Sd {g[x i (t )]}, которая поступает на компаратор, осуще­ствляющий сравнение с известной величиной qо, в результате чего получаем значение измеряемой вероятностной характеристики q*[X ( t )].

Отличие процедуры, реализуемой средством измерений, пред­ставленным на рис. 2, б, заключается в том, что после формиро­вания совокупности {g [x i (t )]} она поступает не на усреднитель, а на компаратор, который выполняет сравнение с известной вели­чиной go ; на выходе компаратора формируется числовой массив {g* [x i ( t i ) ]} и усреднение выполняется в числовой форме. На выхо­де усреднителя Sd имеем результат измерения q* [X (t )].

Средство измерений (рис. 2, в ) основано на формировании массива числовых эквивалентов мгновенных значений реализа­ции случайного процесса Х ( t ), после чего преобразование g и ус­реднение выполняются в числовой форме. Это устройство эквива­лентно последовательному соединению аналого-цифрового пре­образователя (АЦП) и вычислительного устройства (процессо­ра). На выходе АЦП формируется массив мгновенных значений, а процессор по определенной программе обеспечивает реализа­цию операторов g и Sd ,

Погрешность результата измерения вероятностной характе­ристики случайного процесса

Dq* [X (t )]= q*[X (t )]- q [ X (t )]. (7)

Для статистических измерений характерно обязательное на­личие составляющей методической погрешности, обусловленной конечностью объема выборочных данных о мгновенных значени­ях реализации случайного процесса, ибо при проведении физиче­ского эксперимента принципиально не может быть использован бесконечный ансамбль реализации или бесконечный временной интервал. Соотношение (7) определяет результирующую по­грешность, включающую в себя как методическую, так и инстру­ментальную составляющие. В дальнейшем будут приводиться соотношения только для определения специфической для стати­стических измерений методической погрешности, обусловленной конечностью числа реализации и временного интервала.


2. ИЗМЕРЕНИЯ МАТЕМАТИЧЕСКОГО ОЖИДАНИЯ ИДИСПЕРСИИ СЛУЧАЙНОГО ПРОЦЕССА

Математическое ожидание и дисперсия случайного процес­са — основные числовые вероятностные характеристики, измере­ние которых играет большую роль в практике научных исследова­ний, управления технологическими процессами и испытаний.

При измерении математического ожидания результатом из­мерения является среднее по времени или по совокупности мгно­венных значений реализации исследуемого случайного процесса. Усреднение по времени применяется на практике существенно чаще, чем усреднение по совокупности, поскольку работать с од­ной реализацией удобнее и проще, чем с совокупностью. На рис. 3 приведена структурная схема устройства, реали­зующего алгоритм

t

M* [X (t)]= 1/T ò xk (t) dt.

t-T

На рисунке ė преобразователь измеряемой величины в электрический сигнал (датчик); НП — нормирующий преобра­зователь, превращающий входной сигнал в стандартный по виду и диапазону значений; И — интегратор; УС — устройство сопря­жения, обеспечивающее согласование выхода интегратора со входами цифрового вольтметра и регистрирующего прибора;

ЦИП — цифровой прибор (например, цифровой вольтметр);

РП— регистрирующий прибор (самопишущий прибор).

Для оценки среднего квадратичeского значения погрешности, обусловленной конечностью объема выборочных данных,

можно пользоваться следующими соотношениями:

1/2

s =[2D [X(t )] t k /T]

при усреднении по времени T и

1/2

s =[D [X(t )]/N]

при усреднении по совокупности N. Здесь D [X (t)]—дисперсия процесса X ( t ), а t k — интервал корреляции. Дисперсия случайного процесса характеризует математиче­ское ожидание квадрата отклонений мгновенных значений реали­зации случайного процесса от математического ожидания. Таким образом,

T 2

К-во Просмотров: 1634
Бесплатно скачать Реферат: Измерение случайных процессов