Реферат: Изучение механизмов металлорежущих станков
2. Число подвижных звеньев n=7; кинематических пар p=11, три из которых двухподвижные (v12 , v34 , v67 ). Суммарная подвижность –
vΣ = 8 × 1 + 3 × 2 = 14.
3. Простых механизмов в сложном N = 11 – 7 = 4 (кулачково-рычажный с звеньями 0, 1, 2, 3; зубчато-рычажный с звеньями 0, 3, 4; шарнирный 4-звенник с звеньями 0, 4, 5, 6; рычажно-ползунный с звеньями 0, 6, 7). Размерность всех простых механизмов (все они плоские): R1 =R2 = R3 = R4 = 3
4. Общая подвижность механизма по формуле (2) W=14-4×3-1=1. Здесь v0 =1 – местная подвижность ролика 2 в паре v23 с коромыслом 3.
5. Механизм неравномерный, так как содержит шарнирно-рычажные передачи.
6. Механизм реверсивный, так как реверсивна кулачковая передача.
7. Механизм необратимый, так как необратима кулачково-рычажная передача.
8. Механизм регулируемый, так как изменением длины lx рычага в коромысле 6 корректируется длина хода Нх суппорта 7, а заменой кулачка 1 изменяется длина хода и скорость подачи суппорта.
6.2. Промышленный робот (рис. 4)
1. В основании 0 размещен приводной двигательМ1 , в подвижной стойке 4 установлены двигатели М2 , М3 , а на конце руки 6 закреплен пневмодвигатель ПД, ротор 7 которого непосредственно связан со схватом робота. Остальные звенья: 1-шестерня, 2-поворотная платформа, жестко связанная с шестерней, 3 и 5 –ходовые винты.
2. Число подвижных звеньев n=7, кинематических пар Р=10 (одна из них двухподвижная v12 ), суммарная их подвижность vS =9×1+1×2=11.
3. Степень сложности N = 10 – 7 = 3. Промышленный робот содержит 3 простых передаточных механизма: зубчатый с подвижными звеньями 1-2 (R1 =3) и два винтовых, с подвижными звеньями 3-4 и 5-6 (R2 =R3 =2).
4. Общая подвижность механизма W = 11 – (3 + 2 × 2) = 4, то есть робот 4-подвижный: три подвижности (В2 , П4 , П6 ) реализуются от двигателей М1 , М2 , М3 , вращающих входные звенья 1,3,5, а одна подвижность (В7 ) осуществляется непосредственно (без передаточного механизма) от неполноповоротного пневмодвигателя ПД.
5. Механизм равномерный, нереверсивный, необратимый (содержит винтовые пары скольжения) и регулируемый (направление движения изменяется двигателями, а исходное положение и длина перемещений - путевыми упорами, переключающими двигатели).
Рис. 3 Семизвенный плоский механизм привода подачи суппорта
Рис. 4. Четырехподвижный промышленный робот с
цилиндрической координатной системой
6.3. Суммирующий механизм (рис. 5)
1. В этом механизме ведущими являются валы 1 и 3, ведомыми– вал 7. Цепь передач от вала 1 к валу 7 состоит из червячной передачи z1 /z2 и планетарной передачи, в которой вал 2 жестко связан с осями сателлитов 5 и 6, образуя так называемое водило. Последнее передает вращение через шестерни 5 и 6 на вал 7. Вторая цепь (от вала 3) состоит из передач z3 /z4 , z8 /z5 , z5 /z7 и дублирующих передач z8 /z6 , z6 /z7 .
2. Число подвижных звеньев n=7, кинематических пар Р=14 (из них шесть пар –двухподвижные, зубчатые); одна пара (2;4) – пассивная поэтому общая подвижность vå =(14–1)+6=19
3. Сложность механизма N=13-7=6 (две червячных и четыре конических передачи с размерностями Rj =3)
4. Общая подвижность W=19+1–6×3=2. Здесь ск =1 – один замкнутый контур конических передач.
5. Механизм равномерный, нереверсивный, необратимый и нерегулируемый.
Рис. 5. Конический дифференциал: М1 , М2 – электродвигатели соответственно
для ускоренного и рабочего хода, 1– вал с червяком z1 , 2- вал с закрепленным
на нем водилом В и шестерней z2 , 3- вал с червяком z3 , 4- ступица с закрепленными
на ней шестернями z4 и z8 , 5 и 6 – сателлиты, свободно насаженные на водило В,
7- выходной вал с шестерней z7 ; пара (2;4) – избыточная, v24 =1.
7. ИНДИВИДУАЛЬНЫЕ ЗАДАНИЯ ПО АНАЛИЗУ МЕХАНИЗМОВ
7.1. В приложении (стр. 20, 21) предусмотрены задания для 20 вариантов (см. табл. 4). В задании № 1 по схеме механизма необходимо дать его анализ по методике п.7.2. (см. примеры в п.6). В задании 2 предварительно нужно по макету механизма составить его кинематическую схему, учитывая правила изображения звеньев и кинематических пар (табл.1 и 2).
7.2. При анализе свойств механизмов необходимо:
1) Разобраться в принципе действия и составных частях механизма.