Реферат: К решению нелинейных вариационных задач

rvuLn, ^С?/-ка,1+-^).=3' v , т.е. ребра куба равны v Г .

Более подробное изложение приложений неравенств к элементарно­му определению экстремумов более подробно изложено в книгах .


1.3. Об экстремальных значениях квадратного трехчлена

Квадратный трехчлен ^-=-а-х. +6- Jc.- f- c , а. ^ о, представим в виде: -У ^ а ( х- f- &/2а. ) 2 - f- ( с - ё г /^^) Возможно 2 случая:

О- -70 и ol ^- o .

1. О. 70 , ^гъ У^ С - ао. ^и. ^^~°/2о. 2 clz . o , л^ах ^=- С- ^ y ^ ci , г^/усс ж ^ - %cl

Примеры: / 9 ,

1) ^^•г - 6'зс -^/^^ te-з;^^ / ^•^ ^=^ ^с де^.

2) У---^^ S ^-У^-2(^--%): LS / /^^ CL )( У-^/Р п^с ^-Х

Рассмотрим частную задачу, которая играет ключевое значение в теории оптимизации.

Задача 2.

Даны числа Ci^, Ci^, ..., Ctn. . Найти число У такое, чтобы сумма / v2 / ,0 / ,2

^п.^ (х-а^)-(-(у-а^)-^,., ч-(^~с^)

имела наименьшее значение. S^ ^•K2 -2•(Q^t-CL^-^<^)'X^(O ц i 1-Q.^,„^ll^ )^

. ^. ( х- ^^-^) \А, ^ 'А-^^)^^^-^ rv^rv ^^А ^сс эс= ((^+(^ f-,„^ a^)/ h. .

Здесь мы рассматривали лишь простейшие примеры решения задач, с бо­лее сложными задачами можно ознакомиться по литературе.


10

1.4. К решению экстремальных задач с применением производной

Введение изучения производной в школьный курс открыло возмож­ности более глубокого изучения вопросов физики, рассмотрению приклад­ных задач. И задачи на экстремум функции начали рассматриваться с об­щей точки зрения. Например, нахождение экстремума трехчлена = а х2 -/- ё х + с =T'fxJ рассматривается при помощи производной:

^= 2. dsei- e^0 ^ r&- - S/2а- критическая точка, при этом если у4. (^+^)^-2 oi£> o ^ ^ (е-(-^) = 2ае^о, п^>

г^с^ У- У (- ^/2о.)^ иначе г^гъ У=^(~ wq,) .

В пункте 28 [1] хорошо изложены правила нахождения максимальных и минимальных значений функций.

Однако при решении некоторых задач применение элементарных способов более эффективно, чем применение производной. Например, за­дача № 367 решается очень просто элементарным способом:

Данное положительное число разложить на два слагаемых так, чтобы произведение было наибольшим.

Решение: Пусть U - данное число, а X - одно из слагаемых. Из усло­вия ^а^ L X^-^J только при Y= О-- Х .находим Х= °-/ S .Об­общение этой задачи, решаемое в вузовских курсах при помощи экстрему­ма многих переменных следующее.

Задача 3. Положительно^число OL требуется разбить на П. неотри­цательных слагаемых так, чтобы и произведение было наибольшим. Если <Х данное число, то ft слагаемые будут Я?у, ,„, Д?п-/ ; Ci-( Хг^-,„ч- ^. i). При этом произведение Лу- S? s. •,.,' Хц^' L О. -(х/ ч- ,„ ^ ЗСл.^ ) 3 достигает максимума при Эрг ^ Хл = ,„ = X^. f ^ CL ~ {'У-f -+,., -<• Хп - /) . Отсюда у,-= Ci- fn-() Vf ц ^= ^/п ,т.е. все слагаемые равны ^/г. . А решение этой задачи при помощи экстремума функций нескольких переменных весьма затруднительно.


15

1.6. Экстремальные задачи в неполной средней школе

В курсе математики V - VI классов учащимся нередко приходится решать задачи, в которых допускается несколько или даже много решений, причем далеко не всегда равнозначных. В таких случаях можно ставить дополнительный вопрос: найти наиболее выгодное решение, т.е. решать экстремальные задачи. С такими задачами приходится сталкиваться при изучении следующих разделов: "Неравенства", "Площадь и периметр пря­моугольника", "Натуральные числа", "делимость натуральных чисел".

Поскольку ученики V-VI классов встречаются с двойным неравен­ством, то в этих классах методом оценки можно решать задачи на нахо­ждение наибольшего и наименьшего значения линейного выражения a. y-h^ где /ч^эе^/г (лги/?.- целые неотрицательные числа, ^г- /• п- ).

• -'' ' ^

Задача: Стоимость телеграммы вычисляется почтовыми работни

ками по следующему правилу: по 5 копеек за каждое слово и еще 20 копеек за отправку. Какая может быть наибольшая и наименьшая цена телеграммы, если количество слов в теле­грамме определяется решением неравенства: /^ х- ^ ^0 ?

Решение: решение сводится к нахождению наибольшего и наимень­шего значения выражения S' x-^-20 , если //^ а? ^^ , л G /М Сначала можно предложить вычислить значение выражения при несколь­ких значениях переменной, взятых из промежутка ^ ^ х ^ ^ . Замеча­ем, что сумма будет наибольшая, если слагаемое -Ух будет наибольшим, т.е. будет равно 5*40и наименьшим, если слагаемое .^ будет наимень­шим, т.е. будет равно 5*17.

Среди экстремальных задач геометрические задачи на вычисление площадей и периметров представляют очень большой интерес. Решение этих задач в V-VI классах методом оценки формирует первое представле­ние о максимальном произведении при постоянной сумме двух перемен­ных и о минимальной сумме при постоянном произведении.

Задача. Начертите прямоугольник, периметр которого 36 см, и вычислите его площадь.

Решение: оформим в виде таблицы:


16

периметр (см)

36

36

36

36

36

36

36

36

36

длина (см)

17

16

15

14

13

12

11

10

9

ширина (см)

1

2

3

4

5

6

7

8

9

площадь (см )

17

32

45

56

65

72

77

80

81

Вывод: SHaH6.=81cM при й.=6=.9см

Построение прямоугольников и запись решения в виде таблицы по­могает лучше видеть, как изменяется площадь прямоугольника с постоян­ной площадью.

Остановимся на решении экстремальных задач в разделе "Натуральные числа". Здесь на первом этапе решаются самые простые за­дачи, где число рассматриваемых элементов невелико. Это во многом упрощает организацию работы, требует меньше времени и создает хоро­шую возможность детям увидеть особенности применения метода перебо­ра к решению задач.

Задача. С помощью цифр 5,2 и 7 напишите все трехзначные числа, в каждом из которых все цифры различны. Среди этих чисел найдите наибольшее и наименьшее число

Решение: Это есть числа 527, 572, 275, 257, 752, 725. Наибольшее из них - 752, наименьшее - 257.

На первый взгляд кажется, что это очень простая задача, но она несет большую теоретическую нагрузку. В жизненных и производственных си­туациях часто приходится встречаться с задачами, которые допускают много различных решений. Решение экстремальных задач в курсе алгебры проходит в два этапа.

На первом этапе рассматривается неопределенная задача, текст кото­рой переводится на математический язык в виде неопределенного уравне­ния (функции), которое допускает много или бесконечно много решений.

На втором этапе по тем или иным признакам, которые заданы в яв­ном или неявном виде, определяется, какое из решений задачи наиболее выгодно.

1. Ознакомимся с решением экстремальных задач по теме "Линейная функция". Решение этих задач сводится к нахождению экстремума линей­ной функции ^= к-х, •+• о , где ^ и о - постоянные. Если эту функцию рассматривать на сегменте L^) J3>.3 , то она будет иметь на нем наимень­шее и наибольшее значения. При ^>о наименьшее значение у принимает


17

в точке л;= t/ , а наибольшее - в точке л'=/; при H^ o функция У в точке Je-=<^ принимает наибольшее значение, а в точке л'=^ - наименьшее.

Задача. Расстояние между двумя шахтами А и б по шоссейной дороге 60 км. На шахте А добывается 200т руды в сутки, на шахте В - 100т в сутки. Где нужно построить завод по переработке руды, чтобы для ее перевозки количество тонно-километров было наи­меньшим?

Решение: Выясним, что суммарное количество тонно-километров изменяется в зависимости от места нахождения завода, вычислив его, например, для случаев, когда завод находится от пункта А на расстоянии 30 км, 20 км, 10 км. Далее приступаем к решению за­дачи, обозначив расстояние от завода С до шахты А через х:

А С ^ ж ; 6С= 60-х- Количество тонно-километров, пройденных транспортом от А до С за каждый день, составляет 200 ткм, а от В до С - 100*(60-JC) ткм. Суммарное количество (ткм) выразится функцией

f^^ pOx.-^ {0£>( ео-зе.)-^ ^оОх. т- ёооо, д которая определена на сегменте L. О , 60.1.

ysssas- SL...^- ,,-..^<=--„—--„.™——-, Ясно, что это уравнение может иметь А ( - ьи—^ в

бесконечно много решении.

Исследуя функцию У= - foOx + 6000 на сегменте Г о • j bo], получим:

^г^п, "s Gooo . Эта линейная функция будет иметь минимальное значение при ^ ^0, !/^„ = 6cw?TKM. Завод надо строить возле шахты А.

2. Решение задач по теме "Квадратичная функция" сводится к иссле­дованию квадратного трехчлена, поэтому при их решении используются приемы выделения квадрата двучлена или свойствами квадратичной функции.

Задача. Предлагается сделать ограду для квадратного участка земли со стороной 20м или прямоугольного участка земли , основании которого на несколько метров больше, а высота на столько же метров меньше. Сравните площади, периметры квадрата и пря­моугольника.

Решение: Поскольку сторона квадрата 20м, то Р =80м, s5 =400м2 Если бы одну сторону квадрата уменьшить на X метров, а другую увели­чить на Х метров, то Р= -?• (20+ к)ч- 2 • (Ю~ У) , S = ^00-х. -? -fc ^СЮ

С^ ^

J наиб. =400//при jc=o . Следовательно, наибольшую площадь из всех прямоугольников с одинаковыми периметрами имеет квадрат.


18

Достаточно много экстремальных задач можно решать при изучении темы "Квадратный трехчлен". К исследованию квадратичной функции на экстремум сводятся многие задачи экономики, физики, техники, алгебры.

Рассмотрим функцию, заданную формулой (/.^биг^юл. + с , где а., ё,с, - некоторые числа, причем о. ^ о , п. - переменная, п - е ^ Если -- ^/2а<:Д/, то при п.= -^/зл. данная функция принимает экстремальное значение. Если -%а> ^ и { /2а\^/^ то данная функция принимает одно и

• - •/ /<й ^ц ,/ fft ./

то же экстремальное значение дважды: при ^\-•=•~^72Q.i •/2 "• Л^~у2сг ~- /2 . Если - ^/2о, ^ \ , то данная функция принимает наибольшее ( наименьшее) значение всегда при п. =. i .

В остальных случаях данная функция принимает экстремальное зна­чение при натуральном п, которое ближе расположено на числовой прямой к числу - & /^ .

Среди задач на оптимизацию есть задачи, которые могут быть ис­пользованы как на уроках алгебры, так и на уроках геометрии. Это объяс­няется тем, что с точки зрения^ содержания они геометрические (сформулированы в геометрических терминах), а по методу решения это задачи алгебры (они сводятся к определению экстремума функции мето­дом опорной функции).

Задача. Найти максимум произведения лу^ , если х - ^ .^ ^ JL -^ { о. с> с.2 '

Решение: Найдем максимум произведения -х — • -"— ' -fc — , т.к. зсл/i а2 - У с.3 ( J

К-во Просмотров: 203
Бесплатно скачать Реферат: К решению нелинейных вариационных задач