Реферат: К решению нелинейных вариационных задач
а.-2 - ^ eQ -
л5 - у2 г2 ,
вию —— + -^- ^ —з- = < , тогда должно выполняться равенство:
Тг^- Ч^ ? ^ • J £ У 2 ^
-a-s" :: g7- = ~сТ или -а"^ '^^'с'^ уу . Т.к. сумма слагаемых постоянна, то их произведение будет наибольшим когда они равны. Тогда m-OLK (^г}^ л-8-е -- /Г о ее. Ответ: ^•^•^ о
m-CLX (^ i ) = j ^^ g <7 ' <э '
19
1.7. Понятия о задачах математического программирования
Математические модели реальных задач описываются уравнениями, системами уравнений или дифференциальными уравнениями. Но в школьном курсе изучаются еще неравенства и системы неравенств, а их приложения иллюстрирующих их применение для решения реальных задач отсутствуют. Для заполнения этого пробела в первых изданиях учебника "Алгебра и начала анализа" содержался пункт "Понятие о линейном программировании". Ниже приведем методику изложения трех основных задач линейного программирования для изучения в математических кружках в средней школе.
1.7 Л. Транспортная задача линейного программирования
1. Постановка задачи : Пусть на двух станциях ^4 и /\, сосредоточено
соответственно Ct, и 0.^ тонн груза, который необходимо доставить в пункты 6 , Ь-г., В,, в количестве I, , ^д , ^ , соответственно. Стоимость перевозки 1
тонны груза со станции у1, в пункты В,, Вд, &з составляет Сц , С^, G^ рублей
соответственно. Аналогично - стоимость перевозки со станции Л>в пункты В/, bj, б»з составляет G, , С^ ,Сщ рублей. Требуется организовать перевозку так,
чтобы общая стоимость этой перевозки была наименьшей. Все данные
представим в виде таблицы 1.
^^ /•"^ | В/ | fi. | ^ | Кол-во отправленного | ||
t ^^^ | груза | |||||
е^ | (^ | (^ | ||||
А, | ^ | ^2 | ^3 | й< | ||
Сг/ | С?? | Сгз | ||||
А. | х„ | ^2 | •Ггз | ft, | ||
Кол-во доставленного | &< | ^ | ^ | |||
груза |
Таблица 1
20
Математическая модель задачи
Обозначим через -^-количество груза, перевозимого со станции aj в пункт 6^ . Тогда общая стоимость перевозки будет + При этом Jl^t .?. о и удовлетворяет условиям:
^ с/, х„ ^ е^ ^ ^... ^ ^з -г^ - и и е^; (<) ^ с ^ ^/
' S ^ ^ CU Г ^ ^ ^ ^ •2?<5 = Ог
^ т.ч. \ ^-f-Xss. -f-^.^CLi . ^-- ^ \ ^^Х,, =^ (2)
Л/2 + ^22 = Ьг
^ Зеез, ^ Д-^з = &
Итак: найти неотрицательное решение системы уравнений (2) дающее минимальное значение линейной формы (1).
Решение задачи (частный случай) Пусть 0{ -- 200, Лг. = /60 ^ ^ = f^O , & = 90, ^ = W,
Сн - б , С ^ = ^ С^ = 2 , С,, = S , С^ - J, ^з -= 2.
Для удобства обозначим -IV/ = :с » -^/'a := t / . Тогда из (2) и условия задачи получаем следующую систему неравенств:
Г X г0, У 7^0 , Х,л ^ CL -( Х„ + Х^ ) = & - (^-+У) ^0 ' .У^^-ге^, Хаг ^&-^?^,
^2.^^^^/-^^)= ^2-^-&^ (^.^^>
В нашем случае оно примет вид:
' З^У.О^г.О Г О ^ эеf ^ ^0
^у ^2 ^ ^ ^^у^^ ^/ ;
^^^0,^^90 ] / JC^y^-У^ 1^^ ^^^У^^6?0
Тогда: -^ S ^- h ^^ f - h 2- lsoo - ( y ^ J -^ S L W - X . J + + 3 ^^-^ + ^ L~ Юч- зе^З ш^ А зе^У + ^30 U f )
i Решение системы неравенств (2 ) будет выпуклое ограниченное
множество М. Рис. 1, а линейная форма т= х^У ^230 принимает при этом минимальное значение на стороне C^6J множества J4., т.е. на прямой
"я^^ЧО Здесь решение задачи есть множество точек отрезка прямой Г^З . Итак, мы можем взять любую точку на прямой х+-У= Ю . Возьмем, например, точку A ( f0', o) , т.е. ' JC-^ OC^ Ю, У^О . Тогда
а?/з = ^0 , Хц ^ f 0 , Лгг ^ 90, Х^ъ =0.
21
При этих значениях таблица 1 - принимает вид:
^^ь. ,4;-^ | &г | В. | Вз | Кол-во отправленного груза |
А, | Ю | о | f 30 | ^00 |
Аг | 40 | 90 | о | /60 |
Кол-во поставленного груза | 1^0 | 90 | /зо |
При такой схеме перевозок затраты на них будут наименьшими и равны 1300. |
22
1.7.2. Задача о рационе
1. Поставка задачи
Пусть известно, что животному ежедневно надо выдать о^ единиц жиров В/ , ш - углеводов Вг , V, - белков В^ . Для откорма животных можно закупать 2 вида комбикормов. Единица веса первого корма dy содержит <2// единицы вещества K- f , d/г. единицы вещества В^ и <2/а единицы вещества 6э , а стоимость ее равна <?/ рубля. Для второго вида кормов данные соответственно равны 0^ , С^ц , <^гл и Сц . Требуется составить рацион, при котором была бы обеспечена суточная потребность вещества вг , при чем стоимость ее была бы наименьшей.
Все данные поместим в таблице 2.
Виды корма | Белки | Жиры | Углеводы | Стоимость 1-й единицы |
I | ft/< 2 | CLfz 3 | ^<з ^ | ^ |
II | ^ / | CL^ tt | ^ f | е . |
6< 6 | ^3. f2 | ^ ^ |
Таблица 2
Математическая модель задачи
Пусть 1\- количество первого вида корма, х^ - количество второго вида корма, получаемого животным за сутки. Так как животное может получить питательных веществ больше нормы ^ , то очевидно:
( Ц .^^^ , '^--f^.s.
с--Г
(3)
Общая стоимость кормов, затраченных на одно животное будет:
(4) |
т= C \ x ^ C ^ Xs =
i^ W Итак, математическая задача формируется следующим образом
23
Найти неотрицательное решение системы неравенств (3), дающее минимальное значение линейной формы + = C- t з^ + Сг ^-а. . Выражение для + называют линейной формой потому, что в него не входят члены со степенями выше первой и произведением -с, и 3^.
Решение задачи (частный случай).
Пусть g/=6", 8>^f2, ^д=^ 0,^2 , Q^ ^, ^a ^/ ^ ^ gs.^ =^