Реферат: К решению нелинейных вариационных задач

( <?^+ У >.6 2 э^ + ^у ^ ^ ^^1 + ^ ^- ^


есть открытый многоугольник А - (рис.2)


Среди всех точек этого множества нужно найти такую, координаты которой минимизируют линейную форму +=с^5х+ о, -5 У . Если зафик­сировать какое-нибудь значение выражения -f= С , то получим линейное уравнение с двумя неизвестными ^ S- sa- O^ y^ c ^ график которого есть прямая. При изменении от ~т>одо оо прямая o^ v.- t- Qb' d^ c , сме­щаясь параллельно самой себе, "зачертит" всю плоскость. При некотором значении с = С/ эта прямая достигнет многоугольника М в точке В • Оче­видно, в этой точке - f примет наименьшее значение. Координаты точки В, находим решив систему: Г 2 х- i- y ^ G

i <?г ^ ^ = /'<?



Итак, наименьшее значение линейной формы -/=<^5х-к^3^ в М. достигается в точке в ^г; 2) Таким образом, для наивыгод­нейшего откорма животных надо брать оба вида кормов по две единицы.



24

1.7.3. Задача об оптимальном использовании сырья

1. Постановка задачи

Пусть предприятие вырабатывает продукцию двух видов П, и Лд , для чего используется сырье трех видов S<, ^ , -?э соответственно в коли­чествах ^ , ^z. , ^.i . Для изготовления единицы продукции (^потребуется и/, , й& , ^<s единиц сырья Sf , ^г. , •5л соответственно. Условно запишем это так: П = Он S{ + Ом. 5л ч- С?/& 5д . Аналогично допуска­ем , что П = Ог/ ^ у - ^ -s; ? + ^^ ^з . Доход, получаемый предприятием от выпуска единицы продукции Л< и Па равна соответ­ственно Су и Сд. рублям. Требуется спланировать работу предприятия так, чтобы обеспечить наибольшую прибыль. Все данные представим в виде таблицы 3.

Таблица 3

2. Математическое описание задачи

Предположим, что нужно изготовить •3?/ единиц продукции П< и Л^ единиц продукции П^ . На это уйдет d^ Л\ + Cf^ Xa. единиц сырья J/ i. = /, 2/3 . Принимая во внимание ресурсы предприятия, можно написать:

(2// Л'< + 0.^ ^ ^ ^/ о^ О'/ + 0<.i ^ ^ ^

(2/s Я?/ + йгд ^ ^ ^з

Общий доход выражается линейной формой ^= б< а?/ + Сл. 3?г. Итак, требуется найти неотрицательное решение системы нера­венств, дающее максимальное значение f^ e ^ ^ -^ С^Ха. Эта

задача решается аналогично задаче о рационе.


25

1.7.4. Понятие о задаче нелинейного программирования

Рассмотрим примеры решения простейших задач нелинейного про­граммирования.

Пример 1. , Найти минимальное и максимальное значения функции ^= (^ ~^) + (3 ^ "^ ) при ограничениях С X/-^ Хл. > - ^ \ -?гс< +3^1 ^{2 L лу s^, эс^^О

Решение:

Область допустимых решений представляет собой многоугольник АВСЕ (рис.3). Проводя из точки М, как из центра, окружности различных радиусов, получим: минимальное значение функции г (SZ>)=196/13 прини­мает в точке Ю (24/13, 36/13), в которой окружность касается области ре­шений. Точка ^) не является угловой, ее координаты находят решая си­стему уравнений, соответствующих прямым /Йс> и C£~ . Имеется два ло­кальных максимума: з ( д\ = ( f-^)^ + (о-б)2 = ^•5' ;

i(^}-- C&-^)2 + ( о ~ б )2 = Ю


6 . ^

рис.3 Пример 2

Пусть область допустимых решений остается прежней, а й-s (,Т/-^) ^ -<- ( ^й~^)2 найти минимум и максимум i . Решение:

Так как

2 M > i

(е)

, то вершина А есть точка глобального мак-

симума.

\.

—-

— —

---^м

-

/ 1

/

f -

is,

/

н

\^

^

^

s

/

,''

\

(

<2>

/' /

':; ' •-- г

/<

К-во Просмотров: 201
Бесплатно скачать Реферат: К решению нелинейных вариационных задач