Реферат: К вопросу об физической сущности процесса замедления времени в специальной и общей теориях относительности
Структура пространства-времени - есть, по сути дела, многообразие М, наделенное лоренцовой метрикой и определяемой ею аффиной связью [10]. По существу многообразие, в определенном смысле, может быть покрыто кусками координатных сетей. Согласно Предложению 6.4.9 [10]: условие устойчивой причинности выполняется всюду в М , если и только если существует функция f на М , grad которой всюду времениподобен. Здесь условие устойчивой причинности означает, что в каждой точке возможно немного раздвинуть световой конус, не получая при этом замкнутых временодобных кривых.
С физической точки зрения, для нас весьма ценным является появление функции f. Под функцией f прогнозируется априорный род космического Времени в том смысле, что она возрастает вдоль каждой, направленной в Будущее непространственноподобной кривой [ 10]. Представляется физически разумным предположить, что на фоне f задана непрерывным образом в каждой точке локальная термодинамическая "стрела" Времени.
В обоих эйнштейновских теориях производятся операции с дифференциалами координатного Времени t и собственного Времени. При определенных начальных условиях этим дифференциалам при интегрировании соответствуют промежутки Времени. Естественно предположить, что для разностей с достаточной степенью точности можно задать локальные "стрелы" Времени, причем. Такая корреляция не встречает затруднений, потому что обсуждаемые параметры являются Временными характеристиками. Коль скоро, принадлежат космическому Времени, то и анализ будет разворачиваться в проекции на f .
Для физического понимания основ действия механизма замедления Времени в СТО и ОТО предлагается проанализировать вариант, в котором рассматривается расположение локальных "стрел" Времени, по отношению друг к другу, т.е. нам необходимо выяснить, как они сориентированы между собой. Ясно, что воздействие на гамма-фактора () и коэффициента генерирует эффективное изменение, что влечет за собой не равенство координатного и собственного Времени между собой.
Наиболее наглядное решение можно получить в том случае, если провести следующую процедуру. Локальные "стрелы" Времени, ориентируются так, чтобы их начала совместились в одной точке - 0 . Эта точка представляет собой полюс, такой что.B этом случае, разумно ожидать, что одна из локальных "стрел" Времени, например, будет располагаться к локальной "стреле" Времени под некоторым углом ( Рис. 1 ). В дальнейшем, для удобства рассуждения обозначим этот угол через и назовем его - фазовым углом Времени, где z - это индекс, который необходим для выделения данного угла из семейства геометрических углов. Этот угол является калибровочным параметром, который позволяет установить корреляцию между исходными локальными "стрелами" Времени в том смысле, что отображение на осуществляется посредством фазового угла Времени, т.е., где отображает. Данный угол измеряется в двух известных системах: 1) градус, минута, секунда; 2) радиантная мера. Переходя к количественным оценкам значений промежутков Времени необходимо схему на ( Рис. 1 ) модернизировать соответствующим образом ( Рис. 2 ). Проведем к концу локальной "стрелы" Времени ортогональную линию так, чтобы она одновременно пересекла конец локальной "стрелы" Времени. Назовем эту линию - нормалью Времени и обозначим через. Нормаль Времени должна отвечать следующим условиям: эта линия всюду перпендикулярна собственному Времени и всегда пересекает координатное Время.
Используя известные соотношения, легко установить зависимость между локальными "стрелами" Времени
. (8)
Таким образом, мы установили, что локальные "стрелы" Времени связаны между собой тригонометрической функцией - секонс . Напомним два важных свойства этой функции:
1) разложение в
ряд,
где область сходимости - числа Эйлера;
2) функция комплексного переменного
, где период -; функция на всей открытой
плоскости нулей не имеет.
Учитывая, что локальные "стрелы" Времени пропорциональны соответствующим им промежуткам Времени, то аналогичная закономерность будет иметь место и для дифференциалов координатного и собственного Времени
. (9)
Задавая верхние и нижние пределы интегрирования можно найти интересующие нас интервалы Времени
. (10)
Из соотношения (9) вытекает, что если,то при заданном промежутке собственного Времени; и если.
Целью введения фазового угла Времени и функции обеспечивающей его привязку к естественным природным процессам, является предположение о том, что в общей и специальной теориях относительности явление замедления Времени имеет одну и ту же физическую основу, т.е. на прямую имеет место связь между, СТО и ОТО . Эта связь выражается в том, что существует схема вида
В первой части мы рассмотрели только теоретические аспекты проблемы. Все расчеты и практические результаты будут проведены во второй части одноименной работы.
Дополнение: напомним математические свойства, которыми обладает тригонометрическая функция - секонс
1);
2) функция - нулей вообще не имеет, как при действительных, так и при комплексных значений аргумента [11];
3);
4)