Реферат: Катаболизм и стресс у растений
4. Серусодержащие белки - тионины, высокотоксичные для грибов. Как уже отмечалось выше, наблюдается также значительное усиление
образования оксипролиновых белков (в том числе ферментов, например пероксидазы, от активности которой зависит синтез лигнина), входящих в состав клеточных стенок.
Интенсивное новообразование различных белков является отражением перестройки метаболизма инфицированных растений, приводящей к нарастанию устойчивости к патогену[9, стр.557].
Хитиназы из зерна пшеницы, ячменя и других растений обладали свойствами эндохитиназ, в то время как бактериальные ферменты проявляли экзохитиназную активность.
Хитин (поли-М-ацетилглюкозамин) является компонентом клеточных стенок грибов и членистоногих. В них содержатся и хитиназы, которые наряду с хитин-синтетазными комплексами определяют особенности структуры хитинсодержащих клеточных стенок. Однако хитиназа обнаруживается и у организмов, не содержащих хитина: у почвенных бактерий (экзохитиназа, отщепляющая по очереди концевые N-ацетилглюкозные остатки) как инструмент добывания пищи и у растений (эндохитиназа) как инструмент защиты от грибной инфекции и от некоторых насекомых. Интересно, что хитиназа растений как индивидуальный белок обладает также свойствами лизоцима. Основными продуктами деградации хитина были хитобиоза, хитотриоза и хитотетраоза.
"Антигрибные" хитиназы, по-видимому, широко распространены в царстве растений, в стеблях и листьях индуцируясь этиленом или атакой патогенов, а в семенах запасаясь как средство повышения устойчивости к грибам почвы. Хитиназы растений действуют прямо на растущие кончики гифов гриба, вероятно, вместе с другими гидролазами подавляя рост гифов и ограничивая инфицирование растений[8, стр.297].
Специальные исследования показали, что при взаимодействии бактерий и тканей хозяина различные ферменты деградации появляются не одновременно. Например, пектилметилэстераза присутствовала и в неинокулированных бактерией Erwiniacarotovorasubspatroseptia тканях клубней картофеля[8, стр.298], тогда как полигалактуроназная, пектатлиазная, целлюлазная, протеазная и ксиланазная активности появлялись соответственно через 10,14,16,19 и 22 ч после инокуляции.
Накопление патогениндуцированных белков и устойчивость к инфекции проявляются и в соседней неинфицированной ткани. Из этого следует, что защитные белки индуцируются подвижными веществами, которые образуются в местах инфекции и затем передвигаются в непораженные ткани листьев, вызывая в них эффект защиты.
Активный в качестве индуктора компонент не инактивируется протеазами, его положительный заряд и тепловая стабильность могут свидетельствовать, что он представляет собой маленький пептид или аминокислоту. Малые гликопептиды, присутствующие в инфицированных вирусом табачной мозаики листьях табака, могут отвечать за индукцию системной устойчивости растений [8, стр.298].
Уже отмечалось, что под влиянием инфекции наблюдаются лигнификация, суберинизация клеточных стенок, накопление в них гидроксипролиновых белков, каллозы, что создает дополнительный барьер для патогенов. Происходит также накопление оксигенированных производных ненасыщенных жирных кислот, летучих ароматических гексаналей, таннинов, О-хинонов [8, стр.287]. Так как избыточное образование всех этих соединений связано с активацией имеющихся в клетках или с синтезом новых ферментов, то не были неожиданными факты индукции экспрессии патогеном большого количества генов[8, стр.288].
По всей вероятности, круг защитных веществ может быть со временем значительно расширен.
Реакция растений на действие вирусов, так же как на патогенные грибы и бактерии, может варьировать между иммунностью и восприимчивостью [6, стр.328]. Большинство растений устойчиво к вирусной инфекции благодаря природной селекции в ходе эволюции. Интересно, что свойство устойчивости распространяется из инфицированных в непораженные клетки и ткани. Вирусреплицирующая способность растений может быть усилена некоторыми фитогормонами (кинетином, ИУК), полианионами (дрожжевой РНК, поли-И, поли-Ц, сополимером этиленмалеинового альдегида, полиакриловой кислотой). Устойчивость развивалась градуально и была чувствительна к актиномицину Д.
Изучению молекулярных основ взаимодействия патогенов и растения-хозяина, в том числе роли продуктов частичной деградации биополимеров и липидов в выработке устойчивости, в настоящее время уделяется все большее внимание. В дополнение к журналу, посвященному этому направлению исследований - "RhysiologicalandMolecularPlantPathology", недавно начал издаваться специальный журнал "MolecularPlant - MicrobeInteractions". Можно надеяться, что это приведет к подъему уровня работ не только в области молекулярной фитопатологии, но и в теории стресса в целом[8, стр.297].
4. ЗАКЛЮЧЕНИЕ
Уже давно внимание биологов и медиков привлекало интереснейшее явление: в результате действия экстремальных условий, изоляции или отмирания растительных или животных тканей образуются вещества, способные действовать на здоровые клетки и ткани, их рост и развитие, устойчивость и т.д. К ним можно отнести и "раневые гормоны" и "некрогормоны", существование которых было постулировано в начале нашего века Г. Габерляндтом [2, стр.122]. Не вызывает сомнений, что среди этих веществ имеются продукты распада сложных соединений. Некоторые из них способны выделяться в окружающую среду и оказывать действие на другие организмы в экосистемах[4, стр.197].
Рассмотрение особенностей катаболизма биополимеров и липидов в растениях в условиях стресса оказалось сложной задачей, причем не столько из-за избытка, сколько из-за недостаточности сведений, касающихся многих промежуточных этапов деградации этих соединений. Значительная часть литературы посвящена ферментам, катализирующим главным образом, стартовые реакции процессов катаболизма. Хорошо изучены и реакции дальнейшего превращения образующихся при деградации мономерных продуктов. В то же время весьма немногочисленны результаты исследований промежуточных (например, олигомерных) продуктов, их структуры, характера дальнейших превращений, биологической активности и механизма их действия на обмен веществ клеток, что объясняется как методическими трудностями, так и недостаточным вниманием физиологов и биохимиков растений к этой важной области метаболизма.
Можно считать доказанным, что интермедиаты катаболизма биополимеров и липидов играют большую роль в работе сложного регуляторного механизма клетки и в коррекции метаболизма в соответствии с изменившимися условиями, в частности в формировании ответной реакции клеток растений на действие различных стрессоров[4, стр.198].
Необходимо иметь в виду, что сведения о роли продуктов катаболизма в регуляции обмена веществ получены на основании изучения действия экзогенных соединений. Однако нельзя считать, что реакция клеток на эти соединения будет тождественна реакции на их появление или повышение содержания в том или ином компартменте внутри клеток. Более того, представляется вероятным, что клетка реагирует на многие экзогенные биополимеры и липиды и продукты их деградации как на "обломки кораблекрушения", как на сигналы тревоги, идущие от разрушенных или находящихся в состоянии сильного стресса соседних клеток. Эти органические соединения, взаимодействуя с поверхностью клеточной мембраны, вызывают ее включение в цепь усиления сигнала тревоги, состоящую из различных вторичных посредников (в том числе упоминавшихся в предыдущих разделах). По всей вероятности, на внешней стороне плазмаллемы имеются разнообразные рецепторы, с которыми способны связываться вышеупомянутые "обломки кораблекрушения". Можно предполагать, что это реликтовые формы конструкций, с помощью которых осуществлялось получение информации об изменениях гуморальной обстановки вокруг клетки. Некоторые из этих рецепторных конструкций совершенствовались в ходе эволюции многоклеточных высших растений и стали играть роль специализированных высокоэффективных рецепторов гормонов. За другими могла сохраниться изначальная функция взаимодействия с достаточно сложными органическими соединениями (индукторами защитных реакций, в особенности против патогенов), но само появление этих соединений в окружающей здоровую клетку среде приобрело значение неблагополучия, сигнала тревоги. Су?