Реферат: Хромосомы: строение и структурные особенности

За ней у ряда видов следует очень короткий интеркинез, во время которого синтез ДНК и репликация хромосом не происходят, и начинается второе деление мейоза (мейоз II). В этом случае хромосомы не деконденсируются. Однако у некоторых видов растений интерфаза между первым и вторым делением мейоза продолжается довольно долго. В этом случае хромосомы деконденсируются, образуя два вида ядра, разделенные клеточной перегородкой. Второе деление мейоза протекает довольно быстро по типу обычного митоза, но уже в клетках с гаплоидным числом хромосом. В тех случаях, когда интерфаза короткая, профаза II выпадает и второе деление начинается с метафазы II, во время которой происходит образование веретена деления и хромосомы располагаются в экваториальной плоскости. В анафазе II центромеры делятся и начинается расхождение хроматид к полюсам, которое заканчивается на стадии телофазы II. На этой стадии происходит полная деконденсация хроматина, образуются ядра и клеточные перегородки. В конечном итоге в результате мейоза образуется 4 клетки, каждая из которых содержит в ядре гаплоидное (n) число хромосом.

3. Сцепленное с полом наследование

В опытах Менделя и других исследователей по изучению закономерностей наследования было установлено, что ход наследования многих признаков не зависит от того, материнским или отцовским организмом вносит тот или другой аллель, т.е. реципрокные скрещивания дают одинаковый результат.

Однако при анализе наследования ряда признаков у раздельнополых организмов оказалось, что некоторые из них передаются своеобразно и явно зависит от пола.

В этих случаях реципрокные скрещивания давали разные результаты. Было высказано предложение о том, что определяющие такие признаки гены находится в половых хромосомах, в то время как гены, определяющие признаки, наследующиеся в соответствии с классическими схемами, локализованы в хромосомы, одинаковых у обоих полов, т.е. в аутосомах.

Этот вывод и его доказательство были получены еще в 1909г.Т. Морганом с сотрудниками. Изучая наследование признаков, он установил у дрозофилы наличие связи определенных генов с половыми хромосомами и таким образом заложил фундамент хромосомной теории наследственности. Кроме генов, определяющих пол, половые хромосомы содержат гены, влияющие на разные признаки, не имеющие отношения к дифференциации пола. При передачи таких генов и наблюдается явление так называемого наследования, сцепленного с полом .

В своих первых опытах Морган использовал мутацию белых глаз. Дикие дрозофилы имеют красные глаза. Красный цвет глаз W доминирует над белыми w (white).

При скрещивании гомозиготной красноглазой самки с белоглазым самцом в F1 глаза у всех мух красные, а в F2 происходило расщепление в равном соотношении на красноглазых и белоглазых мух только среди самцов, а все самки F2 были красноглазые. Соотношение по полу было 1: 1:

P ♀ красноглазая х ♂ белоглазый

F1 ♀ красноглазые, ♂ красноглазые

F2 ♀ красноглазые, Ѕ ♂ красноглазые и Ѕ ♂ белоглазые

В реципрокном скрещивание результаты отличались тем, что уже в F1 надобилось расщепление по цвету глаз, причем все самки были красноглазыми, т.е. похоже на отцов, а все самцы - белоглазыми, т.е. похоже на матерей. Такое наследование называют крисс - кросс, или крест - накрест. В F2 и среди самок, и среди самцов половина особей имела красные глаза, половина - белые:

P ♀ белоглазая х ♂ красноглазый

F1 ♀ красноглазые, ♂ белоглазые

F2 Ѕ ♀ красноглазые и Ѕ ♀ белоглазые

Ѕ ♂ красноглазый и Ѕ ♂ белоглазые

Такое расщепление становится понятным, если допустить, что гены, определяющие окраску глаз, находится в X-хромосоме, а в Y-хромосоме их нет.

В первом случае скрещивание гомозиготной красноглазой самки WW с белоглазым самцом wY приводит к образованию красноглазых гетерозиготных по генам окраски самок (Ww) и красноглазых самцов (WY). В F1 самки образуют два типа гамет: с Х-хромосомой с геном W и с Y-хромосомой, не несущей гена окраски. В соответствии с этим в F2 все самки будут красноглазыми: Ѕ гомозиготы WW и Ѕ гетерозиготы Ww, а самцы Ѕ красноглазые WY и Ѕ белоглазые wY:

P ♀ WW х ♂ wY

Красноглазая Белоглазый

F1 ♀ Ww ♂ WY

Красноглазые Красноглазые

F2 ♀ WW ♀ Ww ♂ WY ♂ wY

Красноглазые Красноглазые Красноглазые Белоглазые

В реципрокном скрещивании результаты получаются другие, так как гомозиготная белоглазая самка ww образует один тип гамет - с Х-хромосомой с геном w, красноглазый самец (WY) - два типа гамет: с Х-хромосомой, несущий ген W, и Y-хромосомой, не несущей окраски. В F1 все самки Ww будут красноглазые, а самцы wY - белоглазые. В F2 появится красноглазые гетерозиготные по гену окраски самки Ww и гомозиготные белоглазые ww; Ѕ самцов получают Х-хромосомы, несущие ген красных глаз, и Ѕ - ген белых глаз wY:

P ♀ ww х ♂ WY

Белоглазая Красноглазый

F1 ♀ Ww ♂ wY

Красноглазые Белоглазые

F2 ♀ Ww ♀ ww ♂ WY ♂ wY

К-во Просмотров: 290
Бесплатно скачать Реферат: Хромосомы: строение и структурные особенности