Реферат: Кинетическое уравнение Больцмана
Запишем (без вывода) кинетическое уравнение для слабо неоднородного газа., сохранив для рассмотрения задачи о теплопроврдности в левой части уравнения только одно слагаемое с градиентом температуры
*************************************************
§4. Вычисление коэффициента теплопроводности одноатомного газа
Для вычисления коэффициента теплопроводности газа необходимо решать записанное выше уравнение с градиентом температуры .
Пусть - вектор-функция только величин . Тогда решение уравнения () будем искать в виде . При подстановке этого решения в уравнение () получаем множитель . Уравнение () справедливо при совершенно произвольных значениях вектора градиента температуры , тогда должны быть равными коэффициенты при в обеих частях равенства. В итоге для получаем уравнение
Уравнение не содержит градиента температуры и значит не имеет явной зависимости от координат. Функция обязательно должна удовлетворять указанным ранее условиям (). Первые два условия, очевидно, выполняются ( уравнение () не содержит никаких векторных параметров, вдоль которых могли бы быть направлены постоянные векторы- интегралы
И ). Третий интеграл представляет из себя дополнительное условие на функцию g. Если кинетическое уравнение решено и функция
определена, то можно определить коэффициент теплопроводности, вычисляя поток энергии, точнее - его диссипативную часть, не связанную с конвективным переносом энергии (обозначим эту часть потока энергии через ). В отсутствии макроскопического движения в газе Q совпадает с полным потоком энергии Q, который может быть выражен через интеграл
Если система находится в рановесии , то и этот интеграл равен нулю за счёт интегрирования по всем возможным направлениям в газе. При подстановке в () остаётся
В компонентах
Ввиду изотропии среды равновесного газа какие либо избранные направления в нём отсутствуют и тензор может выражаться лишь через единичный тензор ,т.е. сводится к скаляру
Таким образом поток энергии выражается как , где величина есть скалярный коэффициент теплопроводности
Поток Q должен быть направлен в сторону, противоположную градиенту температуры, а величина соответственно должна быть положительна, что автоматически обеспечивается кинетическим уравнением (). В одноатомных газах скорость v- единственный вектор от которого зависит функция g ( в многоатомных газах имеет место зависимость g не только от скорости v , но и отмомента M). Для одноатомных газов функция g имеет вид: