Реферат: Классический метод математического описания и исследования многосвязных систем

Для определения переходного процесса по каналу “возмущающее воздействие r2 – выходная переменная y1“ запишем его уравнение динамики

, (1.2.2)

которое представляет собой неоднородное дифференциальное уравнение второго порядка с постоянными коэффициентами. Решение данного уравнения дается формулой (1.1.5) при j=2.

Для определения корней λ1,2 запишем характеристическое уравнение соответствующего однородного дифференциального уравнения

, (1.2.3)

и решая его, получим , .т. е. переходный процесс по рассматриваемому каналу является колебательным асимптотически сходящимся.

Задача 1.1.2

Математические модели динамических режимов управляемой и управляющей подсистем в переменных "вход–выход" в символической форме описываются векторно-дифференциальными уравнениями вида:

а) управляемая подсистема

,

, (1.2.12)

б) управляющая подсистема

, (1.2.13)

при нулевых начальных условиях, где yi(t), ui(t), ri(t), zi(t) – выходные, управляющие, возмущающие переменные и задающие воздействия соответственно.

Задание

1. Составить структурную схему многомерной САУ на основе принципа управления по отклонению и сформировать в ней отрицательные обратные связи.

2. Получить уравнение динамики многомерной САУ и ее характеристическое уравнение.

Решение

1.Структурная схема двумерной САУ с информационными каналами в подсистемах представлена на рис. 1.2. Настоящая схема синтезируется на основе принципа управления по отклонению и уравнений (1.2.12), (1,2.13).

При формировании отрицательных обратных связей в системе необходимо учитывать, что количество элементов обратного действия в контуре управления должно быть нечетным.

1.1. Контур управления выходным параметром у1(t).

Управляемая подсистема по каналу “” – элемент обратного действия. Рассогласование вводится в управляющее устройство в виде , то есть сумматор (элемент сравнения) является элементом обратного действия. Следовательно, канал управляющей подсистемы в рассматриваемом контуре должен содержать элемент обратного действия, поэтому элемент (р+1) матрицы должен быть со знаком минус [-(p+1)].


r1

r2

z1 u21 u11 y11

z2 u22 u12 y12


y22

y21

Рис. 1.2. Структурная схема двумерной САУ

К-во Просмотров: 197
Бесплатно скачать Реферат: Классический метод математического описания и исследования многосвязных систем