Реферат: Классический метод математического описания и исследования многосвязных систем

1.1. ОСНОВНЫЕ ПОНЯТИЯ И РАСЧЕТНЫЕ ФОРМУЛЫ

Математическая модель линейной непрерывной многосвязной системы в физических переменных "вход-выход" при детерминированных воздействиях может быть представлена векторным дифференциальным уравнением в символическом виде [*]:

, (1.1.1)

где – вектор размерности n выходных координат системы; – вектор размерности m управляющих воздействий; – вектор размерности m1 возмущающих воздействий; , , - полиномные матрицы размерностей , , соответственно, элементы которых являются полиномами от р с постоянными коэффициентами (например , - линейная комбинация относительно выходной координаты yj и ее производных); - символическое обозначение производной; t – время. При этом предполагается существование соответствующих производных от y(t), u(t), r(t) по t и kL>kG, kL>kN, где через kL, kG, kN обозначены порядки старших производных полиномов от р в соответствующих матрицах L(p), G(p) и N(p).

Уравнение движения САУ составляется на основе ее структуры и математического описания, входящих в систему элементов, и имеет вид уравнения (1.1.1), где u(t)=z(t) и z(t) - вектор задающих воздействий на систему.

Уравнение движения САУ (1.1.1), записанное относительно у(t), называется уравнением автоматического управления (УАУ)

, (1.1.2)

где , - матричные передаточные функции по задающему z(t) и возмущающему r(t) каналам соответственно.

Для определения собственных движений системы (1.1.1), то есть когда u(t)=0 (или z(t)=0) и r(t)=0, и ее порядка необходимо записать характеристический определитель

, (1.1.3)

и найти корни λj характеристического уравнения

. (1.1.4)

Система будет устойчивой, если вещественная часть всех корней характеристического уравнения (нули функции ) будет неположительной.

Общее решение неоднородной системы линейных дифференциальных уравнений может быть представлено в виде суммы общего решения yo(t) однородной системы и частного решения уч(t) исходной неоднородной системы

, (i=1,…,n), (1.1.5)

где: Cij - коэффициенты, определяемые начальными условиями дифференциальных уравнений; q - степень характеристического уравнения.

1.2. ПРИМЕРЫ РЕШЕНИЯ ЗАДАЧ

Задача 1.1.1

Построить сигнальный граф математической модели динамического режима САУ, записанной в переменных "вход–выход" в символической форме векторно-дифференциальным уравнением вида:

,, (1.2.1)

и определить характер свободного движения процесса по каналу “возмущающее воздействие r2 – выходная переменная y1“.

Решение

Сигнальный граф рассматриваемой САУ, в соответствии с уравнением (1.2.1) представлен на рис. 1.1.

Независимость выходных переменных yi в САУ определяется ее физическими свойствами и математически выражается в виде диагональности матрицы процесса L(p). На рис.1.1 независимость выходных переменных между собой отображается не связанностью вершин у1 и у2 сигнального графа, то есть независимостью уравнений между собой. Это позволяет решать уравнения независимо (отдельно) друг от друга.


y1

z1 r1

z2 r2

y2

--> ЧИТАТЬ ПОЛНОСТЬЮ <--

К-во Просмотров: 194
Бесплатно скачать Реферат: Классический метод математического описания и исследования многосвязных систем