Реферат: Коллоидная химия и поверхностные явления
Это разделение веществ в результате сорбционных процессов при движении одной из фаз. Динамическая сорбция в хроматографии осуществляется двумя способами:
1. При фронтальной хроматографии раствор разделяемых веществ непрерывно пропускают через слой сорбента
2. При элютивной хроматографии вводят в начальную часть слоя сорбента смесь разделяемых веществ и затем пропускают растворитель, который «тащит» разделяемые молекулы. Расстояние, пройденное веществом по сорбенту, прямо пропорционально растворимости данного вещества в пропускаемом растворителе. Даёт возможность полностью разделять вещества, входящие в состав разделяемой смеси.
Коллоидная химия
Дисперсные системы – это системы, состоящие из множества частиц одной фазы (дисперсной), распределённых в объёме другой фазы – дисперсионной.
Дисперсионная среда | Дисперсная фаза | Характеристика по размеру частиц | Название системы |
газ | Жидкость | Коллоидно-дисперсные (10-7ра -10-9 м) | Аэрозоль |
Грубодисперсные (10-5 -10-7 м) | Туман | ||
Твёрдое тело | Кд | Аэрозоль | |
Гд | Пыль, дым | ||
Жидкость | Газ | Кд | Пена |
Гд | |||
Жидкость | Кд | Эмульсия | |
Гд | |||
Твёрдое тело | Кд | Лиозоль | |
Гд | Суспензия | ||
Твёрдое тело | Газ | Кд | Твёрдая пена |
Гд | |||
Жидкость | Кд | Нет названия | |
Гд | |||
Твёрдое тело | Кд | Твёрдый золь | |
Гд |
Лиофильные и лиофобные золи
Лиофильные системы – это дисперсные системы, образующиеся самопроизвольно, они термодинамически устойчивы. Такими системами являются растворы высокомолекулярных соединений.
Лиофобные золи образуются из пересыщенных растворов или в результате дробления более крупных частиц.
Получение лиофобных золей
1. Конденсационные методы. Из них наиболее распространены метод замены растворителя и метод химической конденсации. Пример первого метода – получение золя канифоли в воде, при этом к спиртовому раствору канифоли постепенно добавляют воду, растворимость канифоли снижается, и образуется лиофобный золь. Пример второго метода – получение золя гидроксида железа путём разложения хлорида железа кипячением раствора
2. Дисперсионный метод – разрушение до коллоидно-дисперсных частиц более крупных агрегатов
3. Пептизация – «расцепление» агрегатов, образовавшихся при коагуляции лиозоля, на отдельные мицеллы; процесс, обратный коагуляции. Возможна, если структура коллоидных частиц не изменена.
Различают опосредованную и непосредственную пептизацию. При непосредственной пептизации к осадку добавляют раствор потенциалопределяющих ионов, в результате чего восстанавливается двойной электрический слой. При опосредованной пептизации потенциалопределяющие ионы выделяются при добавлении какого-либо реактива, высвобождающего их.
Мицеллярная теория коллоидов
Дисперсная фаза золя состоит из мицелл. Мицелла – это частица основного вещества дисперсной фазы, окружённая двойным электрическим слоем. Коллоидно-химическая формула мицеллы (рассмотрим для AgCl) записывается следующим образом:
{(mAgCl* nCl- )* (n-x)H+ }* xH+ или {(mAgCl* nAg+ )* (n-x)NO3 - }* xNO3 -
Особым шрифтом выделена твёрдая частица хлорида серебра – ядро мицеллы. Жирным шрифтом выделены потенциалопределяющие ионы, подчёркнуты в формуле противоионы (двойной чертой – диффузный слой, одной – адсорбционный).
Устойчивость и коагуляция лиофобных золей
По теории Пескова, устойчивость коллоида объясняется присутствием кроме дисперсной фазы и дисперсионной среды третьего вещества – стабилизатора, образующего вокруг коллоидной частицы сольватный слой. Этот процесс – лиофилизация коллоида. Этот процесс можно вызвать адсорбцией поверхностно-активных веществ на поверхности коллоидной частицы.
По физической теории устойчивости и коагуляции электролитами между мицеллами существуют силы притяжения и отталкивания. Силы отталкивания действуют, когда диффузные слои мицелл перекрываются друг другом. Эти силы являются не просто кулоновским взаимодействием. Дерягин показал, что здесь проявляется расклинивающее давление. Притяжение мицелл друг к другу обусловлено Ван-дер-ваальсовыми силами.
Коагуляция – это осаждение дисперсной фазы путём слипания частиц друг с другом. Наиболее важной является коагуляция под действием электролитов. Правила такой коагуляции:
1. Коагуляцию может вызвать любой электролит
2. Минимальная концентрация электролита, с которой начинается коагуляция – порог коагуляции
3. Коагулирующим действием обладает тот ион электролита, который по знаку противоположен заряду гранулы мицеллы
4. Правило Шульце – Гарди: чем больше валентность иона, тем больше его коагулирующая способность
5. В ряду органических ионов коагулирующая способность возрастает с повышением адсорбционной способности
6. В ряду неорганических ионов с одинаковым зарядом их коагулирующая способность возрастает с уменьшением гидратации (например, в ряду однозарядных катионов – от лития к рубидию)
7. В момент начала коагуляции электрокинетический потенциал снижается до критической величины в 0,03 В
8. Ионы, вызвавшие коагуляцию, всегда присутствуют в полученных осадках