Реферат: Комбинационные схемы

Для аналитического представления переключательных функций можно использовать не только нормальные формы, но и так называемые скобочные формы представления функций. Скобочные формы получаются путем тождественных преобразований МДНФ (МКНФ) с использованием скобок, изменяющих порядок (последовательность) логических преобразований. При вынесении общих членов за скобки порядок функции увеличивается. В практике проектирования логических схем к скобочным формам приходится обращаться в двух случаях: а) когда необходимо уменьшить аппаратные затраты и стоимость при реализации схем на логических элементах; б) когда число переменных и термов велико и реализация функций на основании МДНФ (МКНФ) с использованием стандартных логических элементов (с стандартным числом входов) невозможна. На рис.6,а представлена карта Карно логической функции, МДНФ которой

y = x3 x2 x1 x3 x2 x0 x3 x1 x0 .(8)

Этой функции соответствует логическая схема второго порядка, показанная на рис.6,б. На основании законов дистрибутивности функцию (8) можно представить в форме

y = x3 [ x2 ( x1 x0 )x1 x0 ],(9)

которой соответствует схема на рис.6,в. В этой схеме максимальное число последовательно включенных логических элементов равно четырем, т.е. логическая схема имеет четвертый порядок. Каждый логический элемент имеет конечное быстродействие, которое характеризуется задержкой распространения сигналов от входа к выходу. Чем выше порядок логической схемы, тем больше задержка сигналов, тем ниже быстродействие схемы. Это недостаток логических схем, реализованных на основе скобочных форм ПФ.

Положительное свойство таких схем – меньшая сложность (аппаратные затраты) и стоимость.

Существует несколько способов оценки сложности логических схем: сложность по Квайну, определяемая как суммарное число входов всех логических элементов; сложность, как число логических элементов; сложность как число условных стандартных корпусов микросхем.

Так, суммарное число входов логической схемы четвертого порядка (рис.6,в) равно 10, а логической схемы второго порядка (рис.6,б) – 12.

В общем случае быстродействие и сложность схемы (стоимость) жестко связаны, при проектировании логических схем можно “обменять” быстродействие на стоимость и наоборот.

Второй пример необходимости использования скобочной формы ПФ рассмотрим на примере проектирования мажоритарного элемента “2 из 3” в двух вариантах: когда допустимо использовать логические элементы И-НЕ с любым необходимым числом входов и когда можно использовать только 2-входовые логические элементы И-НЕ.

В минимальной ДНФ логическая функция мажоритарного элемента в базисе И-НЕ имеет вид


y = .(10)

Этому уравнению соответствует логическая схема второго порядка рис.7,а, в которой используются 2- и 3-входовые элементы И-НЕ.

Если для реализации схемы разрешается использовать только 2-входовые элементы И-НЕ, то уравнение (10) преобразуется в скобочную форму

y =,(11)

которому соответствует логическая схема четвертого порядка рис.7,б, которая хуже схемы рис.7,а по характеристикам быстродействия и сложности. Ухудшение характеристик оправдывается только возможностью реализации схемы на заданных стандартных элементах.

8. Комбинационные схемы

Логическая схема (рис.8) с n входами и k выходами реализует систему переключательных функций y0 ...yk -1 . Каждая функция yi (x0 ...xk -1 ) однозначно соответствует входным наборам сигналов, комбинациям входных сигналов. Такие цифровые устройства образуют класс комбинационных схем (КС). Их часто называют схемами без обратных связей, или схемами без элементов памяти.


КС с несколькими выходами может быть представлена в виде совокупности схем, у каждой из которых лишь один выход. Работа каждого выхода описывается либо таблицей истинности, либо логическим уравнением.

В цифровой технике применяется большое число типовых (стандартных) КС, выполненных в виде интегральных схем малой и средней степени интеграции. Все многообразие КС, применяемых в цифровых устройствах, можно классифицировать по их основному функциональному назначению – по типу логической задачи, которую может решать КС в цифровом устройстве. По функциональному признаку можно сформировать следующие группы КС.

Логические элементы (ЛЭ) общего назначения, выпускаемые в виде готовых интегральных логических схем малой степени интеграции. К ним относятся ЛЭ, представленные на рис.9. Они образуют технически полную систему элементов, т.е. удовлетворяющую требованиям функциональной и физической полноты.

Функционально полная система элементов – система позволяющая реализовать любые, сколь угодно сложные ПФ путем представления их через типовые (базисные) функции. Физически полная система элементов – система, обеспечивающая работоспособность и надежное взаимодействие элементов при всевозможных комбинациях связи между ними (совместимость входных и выходных сигналов при воздействии на элемент нагрузок и дестабилизирующих факторов, при разбросе параметров и характеристик элементов и т.п.).

Преобразователи кодов – дешифраторы, детекторы состояний, шифраторы, преобразователи специальных кодов, ПЗУ и др.

Коммутационные узлы – ключи, мультиплексоры, мультиплексоры-демультиплексоры и др.

Арифметические узлы – схемы контроля на четность, сумматоры, схемы ускоренного переноса, арифметико-логические устройства, числовые компараторы, умножители и др.

К-во Просмотров: 550
Бесплатно скачать Реферат: Комбинационные схемы