Реферат: Конические сечения

y2 =x(2a-x) и y2 =x(2a+x) (3)

первое из которых является уравнением окружности радиуса а, а второе – уравнением равносторонней гиперболы. Эллипс и гипербола (2) могут быть получены из окружности и гиперболы (3) сжатием к оси абсцисс в отношении √p/a.

Аполлоний прежде всего дает более общее определение. Во – первых, он берет произвольный круговой конус; во – вторых, рассматривает обе его полости ( что дает ему возможность изучать обе ветки гиперболы); наконец, он проводит сечение плоскостью расположенной под любым углом к образующей.

На привычном языке аналитической геометрии, можно сказать, что до Аполлония конические сечения рассматривались по отношению к прямоугольной системе координат, причем одна из осей совпадала с главным диаметром, а вторая проходила перпендикулярно к ней через вершину кривой; Аполлоний же относил кривые к любому диаметру касательной проведенной в одном из его концов, т.е. к некоторой косоугольной системе координат.

После стереометрического определения Аполлоний также дает вывод симптомов – уравнений кривых. При этом он классифицирует полученные кривые по виду определяющего их уравнения, т.е. в основу кладется точка зрения, свойственная аналитической геометрии.

Вывод уравнения для параболы

Пусть BAC – сечение кругового конус плоскостью, проходящей через ось (рис. 3), и пусть проведена плоскость GHD так, что DE перпендикулярна BC, а GH параллельна AB ( GHможно было выбрать параллельной AC). Найдем уравнение кривой DGE, полученной в сечении.


Рис. 3

Пусть К – произвольная точка этой кривой. Проведем KL параллельно DE и MN параллельно BC. Плоскость проходящая через KL и MN, будет параллельна плоскости основания и, как это ранее доказал Аполлоний, будет пересекать конус по кругу. Поэтому KL2 =ML•LN.

Но , т.е. ,

, т.е. .

Значит,

Отрезок GL есть переменное расстояние проекции точки Д от вершины, члены постоянны. Аполлоний выбирает такой отрезок GF, что

Тогда KL2 =GF•LG. Это и есть симптом – уравнение сечения.

Если обозначить KL=y, LG=x, GF=2p, то мы получим уравнение в привычной форме: y2 =2px.

У Аполлония уравнение записывается также словесно – гречески: если GH – один из диаметров параболы, а KL – полухорда, сопряженная с этим диаметром, то Аполлоний откладывает GR = 2р перпендикулярно к GH. Тогда утверждается, что в каждой точке квадрат, построенный на LK (рис. 4), должен равняться прямоугольнику GRSL, т.е. GL•GR.

Название «парабола» происходит от названия Аполлония παραβολή (приложение), так как задача о построении точки этой кривой сводится к задаче о приложении (до Аполлония параболу называли сечением прямоугольного конуса вращения).

Рис. 4

Вывод уравнения для эллипса и гиперболы

Аналогично Аполлоний получает уравнение эллипса и гиперболы.

Так, для эллипса доказывается, что LK2 = пл. GLL′G′ (рис. 5), где GH=2a – некоторый диаметр эллипса, LK – полухорда, сопряженная с ним, GR=2p – постоянная, причем GR перпендикулярна GH. Чтобы перейти к более привычной форме записи, заметим, что


Рис. 5

,

т.е.

,

или

.

К-во Просмотров: 496
Бесплатно скачать Реферат: Конические сечения