Реферат: Конические сечения
1. Работы Аполлония
2. «Конические сечения» Аполлония.
2.1 Вывод уравнения кривой для сечения прямоугольного конуса вращения
2.2 Вывод уравнения для параболы
2.3 Вывод уравнения для эллипса и гиперболы
2.4 Инвариантность конических сечений
2.5 Дальнейшее исследование конических сечений в трудах Аполлония
2.6 Дальнейшее развитие теории конических сечений
3. Заключение
4. Список литературы
Работы Аполлония
Аполлоний родился в Пергах в Малой Азии. Расцвет его деятельности падает примерно на 210г. до н.э. В это время он жил в Александрии, куда переехал еще юношей и где учился под руководством математиков школы Евклида. Аполлоний прославился как геометр и астроном. Умер он около 170г. до н. э.
В математике Аполлоний более всего известен своими «Коническими сечениями», в которых он дал полное изложение теории, причем развил аналитические и проективные методы. Аполлоний написал трактат «О вставках», посвященный классификации задач которые решаются с помощью вставок. Такие задачи могут оказаться разрешимыми циркулем и линейкой (плоские задачи), с помощью конических сечений (телесные задачи) и с помощью других кривых (линейные). Выявление того, к какому классу относится та или иная задача, могло означать начало их алгебраической классификации. Интерес Аполлония к алгебраическим проблемам проявился и в другой его работе – «О неупорядоченных иррациональностях», в которой он продолжал классификацию Евклида.
Чисто геометрическими работами Аполлония являются: работа «О спиральных линиях», в которой он рассматривает спирали на поверхности цилиндра, «О касании», где разбирается знаменитая задача Аполлония: «Даны три вещи, каждая из которых может быть точкой, прямой или окружностью; требуется провести окружность, которая проходила бы через каждую из данных точек и касалась бы каждой из данных прямых или окружностей».
Из сочинений «О плоских геометрических местах» можно заключить, что Аполлоний рассмотрел преобразование плоскости на себя, которые переводят прямые и окружности в прямые и окружности. Частным случаем этих преобразований являются преобразования подобия и инверсии некоторой точки.
Некоторые труды Аполлония были утрачены и не дошли до наших дней.
«Конические сечения» Аполлония
«Конические сечения» состоят из восьми книг. Первые четыре, в которых, по словам автора, излагаются элементы теории, дошли до нас по-гречески, следующие три – в арабском переводе Сабита ибн Корры, последняя – восьмая книга - утеряна. Имеется реконструкция ее текста, принадлежащая английскому астроному Э. Галлею (XVIIIв.).
Кривые второго порядка были впервые рассмотрены в связи с задачей удвоения куба, Менехм представил их как плоские сечения прямоугольного, тупоугольного и остроугольного конусов вращения. Такое стереометрическое представление гарантировало существование и непрерывность рассматриваемых кривых. Затем Менехм переходил к выводу основного планиметрического свойства сечения, которое древние называли симптомом (уравнение кривой).
Вывод уравнения кривой для сечения прямоугольного конуса вращения
Пусть OAB – сечение этого конуса плоскостью, проходящей через ось OL, и пусть PLK – след плоскости, перпендикулярной к образующей этого конуса (рис. 1). Тогда KM2 = AK•KB, так как AMB – полукруг. Но AK=PP′=√2LP2 , а KB=√2KP2 , поэтому KM2 =2LP•KP.
Рис. 1
Обозначим KM через y, KP – через p, тогда получим
y2 =2px. (1)
Это уравнение, или симптом, кривой, которое записывается с помощью буквенной символики, а древние записывали в словесно – геометрической форме: квадрат на полухорде KM в каждой точке равен прямоугольнику PKSR, построенному на отрезке PK оси до вершины (x) и на постоянном отрезке PR (рис. 2).
Рис. 2
Аналогично выводилось уравнение для сечений остроугольного и тупоугольного конусов, т.е. эллипса и гиперболы:
= и =, (2)
где 2a – большая ось эллипса или действительная ось гиперболы,
а р –постоянная.
--> ЧИТАТЬ ПОЛНОСТЬЮ <--