Реферат: Конические сечения
Аналогично для гиперболы (рис. 6) получается уравнение
LK2 = пл. GLL′G′, т.е. , или .
Следовательно, задача о построении точек гиперболы сводится к задаче о приложении с избытком («гиперболическая задача»), чем и объясняется название «гипербола» ( ύπερβολή – избыток). Это название также было введено Аполлонием, до него гиперболу называли сечением тупоугольного конуса вращения.
Построенный отрезок GR=2p, откладываемый перпендикулярно диаметру GH, Аполлоний назвал «прямой стороной».
Рис. 6
В настоящее время величину p именуют параметром канонического сечения (в случае эллипса и гиперболы с полуосями a и bp=b2 /a, и коэффициент сжатия √p/a, преобразующего окружность или равностороннюю гиперболу в данный эллипс или гиперболу, равен b/a).
Классификация конических сечений у Аполлония была по существу, алгебраической.
Инвариантность конических сечений
Аполлоний прекрасно понимал (и это сближало его с геометрами Нового времени), что такая классификация законна только в том случае, если вид уравнения не изменяется при отнесении кривой к другому ее диаметру и сопряженным с ним хордам.
В первой книге он исследует данный вопрос. Для этого необходимо было определить направление хорд, сопряженных с любым диаметром. При стереометрическом определении сопряженные направления получаются автоматически. Однако для решения задачи, поставленной Аполлонием, нужно определение, независимое от стереометрии. Аполлоний и делает это: он доказывает, что прямая проведенная через точку A канонического сечения параллельно направлению хорд, сопряженных с диаметром, проходящим через A, есть касательная. После этого он строит касательную к параболе, эллипсу, кругу и гиперболе.
Пусть P – некоторая точка на параболе и АА′ – один из диаметров (рис. 7). Аполлоний доказывает, что касательная PRотсечет от продолжения диаметра отрезок AR=AQ, если PL – хорда, сопряженная с AA′. Для гиперболы, эллипса и круга он получает соотношение (рис. 8, для эллипса)
Рис . 7
RA:RA′=QA:QA′.
Аполлоний преобразует затем уравнение эллипса и гиперболы так, что начало координат оказывается в центре кривой, а уравнение параболы так, что начало координат совмещается с вершиной этой кривой.
Таким образом, здесь осями координат служат два сопряженных диаметра. После этого он показывает, что вид уравнения не изменяется, если в качестве новых осей взять любой из диаметров кривой и касательную, проведенную в одном из его концов.
Рис. 8
В первой книги Аполлоний рассматривает множество систем координат, зависящее от одного параметра, так как эти системы координат определяются одной точкой кривой – концом диаметра, и доказывает инвариантность уравнений эллипса, гиперболы и параболы относительно преобразований соответствующих систем координат.
В конце первой книги Аполлоний показывает, что можно выбрать диаметр, который будет перпендикулярен к сопряженным с ним хордам. Тогда рассматриваемую кривую можно представить как сечение любого тупоугольного, либо остроугольного, либо прямоугольного конусов вращения плоскостью, перпендикулярной к образующей. Этим устанавливается тождество кривых, введенных Аполлонием, с каноническими сечениями, которые рассматривались до него.
Основная идея первой книги состоит в том, чтобы за основу классификации кривых принять свойства их алгебраических уравнений, и именно те которые остаются инвариантными при допустимых преобразованиях координат. Только в XIX в. Эта мысль понята до конца, когда Клейн в «Эрлангенской программе» установил новый взгляд на геометрию, как науку об инвариантах определенных групп преобразований плоскости или пространства.
Дальнейшее исследование конических сечений в трудах Аполлония
В последующих трех книгах Аполлоний развивает теорию конических сечений: выясняет основные свойства сопряженных диаметров асимптот, получает уравнение гиперболы относительно асимптот (xy=const) и устанавливает основные свойства фокусов эллипса и гиперболы. Здесь же впервые появляются полюсы и поляры относительно конических сечений: если из точки можно провести две касательные к коническому сечению, то прямая соединяющая точки касания, называется полярой данной точки, а точка полюсом этой прямой. Если передвигать полюс по прямой, пересекающей сечение, то поляра будет вращаться вокруг полюса этой прямой, если же передвигать полюс по прямой, не пересекающей сечение, то поляра тоже будет вращаться вокруг некоторой точки, причем в этом случае точку вокруг которой вращается поляра, и прямую, по которой движется полюс, также называют полюсом и полярой. В четвертой книге Аполлоний рассматривает вопрос о числе точек пересечения двух конических сечений.
В пятой книге Аполлоний определяет все нормали к коническому сечению (перпендикуляры к касательной, восстановленные в точке касания). В шестой книге изучаются подобные конические сечения.
В седьмой книге содержатся знаменитые теоремы Аполлония:
a) сумма квадратов на сопряженных диаметрах эллипса равна сумме квадратов на главных осях;
b) разность квадратов на двух сопряженных диаметрах гиперболы равна разности квадратов на главных осях;
c) параллелограмм, построенный на двух сопряженных диаметрах эллипса или гиперболы, имеет постоянную площадь.
Дальнейшее развитие теории конических сечений
В древности методы исследования кривых созданные Аполлонием, не получили развития, хотя до начала V в. н.э. его труды изучались и комментировались. Что касается самих конических сечений, то они были применены еще Архимедом для решения и исследования кубического уравнения. Для тех же целей применяли конические сечения позднейшие античные геометры и ученые стран ислама.
В математическом естествознании долгое время не получили ни какого применения, если не считать изучение отражения света от параболических зеркал. Только в XVII в. наступило возрождение идей Аполлония: Ферма и Декарт перевели его метод на язык новой алгебры, основав аналитическую геометрию, а Ньютон, применил эти методы для описания и исследования кривых третьего порядка. Но еще раньше теория конических сечений получила самое широкое применение в механике земных и небесных тел: Кеплер установил, что планеты нашей солнечной системы движутся по эллипсам, в одном из фокусов которой находится Солнце; Галилей показал, что брошенный камень летит в пустоте по параболе. Наконец, в 80-х годах XVII в. Ньютон создал свои «Математические начала натуральной философии», непосредственно опираясь на труды Аполлония.
Заключение