Реферат: Конспект лекций по дискретной математике

в) раскрытие скобок с применением дистрибутивного закона

г) упрощения выражения с применением закона поглощения

Приведение произвольных нормальных форм Булевой функции к каноническим

Для приведения произвольной ДНФ к КНФ необходимо использовать правило дизъюнктивного развертывания применительно к каждому из неполных конъюнктивных термов.

_ _

P=P(xi Úxi )=Pxi ÚPxi, где P-неполный конъюнктивный терм (ранг этого терма

меньше n), а xi - недостающий в терме аргумент.

Пример:

_ _ _ _ _ _ _ _ _ _

y=x1 Úx2 x3 (ДНФ)=x1 (x2 Úx2 )(x3 Úx3 ) Úx2 x3 (x1 Úx1 )=x1 x2 x3 Ú x1 x2 x3 Ú

_ _ _ _ _ _ _ _ _

Úx1 x2 x3 Úx1 x2 x3 Ú x1 x2 x3 Ú x1 x2 x3 (КДНФ)

Замечание:

После раскрытия скобок могут получиться одинаковые термы, из которых нужно оставить только один.

y= (0,1,2,3,5)=f3

Преобразование КНФ к ККНФ реализуется путем применения правила конъюнктивного развертывания к каждому неполному дизъюнктивному терму.

_ _

P=PÚxi xi =(PÚxi )(PÚxi )

_ _ _ _ _ _ _ _ _ _

y=x1 Úx2 x3 (ДНФ)=(x1 Úx2 )(x1 Úx3 )(КНФ)=(x1 Úx2 Úx3 x3 )(x1 Úx3 Úx2 x2 )=

_ _ _ _ _ _ _ _

=(x1 Úx2 Úx3 )(x1 Úx2 Úx3 )(x1 Úx2 Úx3 )(x1 Úx2 Úx3 )(ККНФ)

y=(4,6,7)


Минимизация булевых функций на картах Карно(см . Практику) .

Метод Квайна-МакКласски базируется на кубическом представлении булевых функций.

Кубическое представление булевых функций .

В кубическом представлении булевой функции от n переменных все множество из 2n наборов ее аргументов рассматривается как множество координат вершин n-мерного куба с длинной ребра равной 1. В соответствии с этим наборы аргументов, на которых булева функция принимает значение равное 1 принято называть существенными вершинами.

Существенные вершины образуют так называемые ноль-кубы (0-кубы). Между 0-кубами существует отношение соседства и определена операция склеивания. Два 0-куба называются соседними если они отличаются только по одной координате.

Пример :n=4 0101

0001 - два соседних 0-куба

результат склеивания : 0x01 (*)

Склеивание 2-х соседних 0-кубов дает в результате 1-куб. Координата, отмечаемая символом х, называется свободной (независимой, несвязанной), а остальные (числовые) координаты называются зависимыми (связанными). Аналогичное отношение соседства существует между 1-кубами, в результате склеивания которых получается 2-куб.

0х01

0х11 - 0хх1 (**)

К-во Просмотров: 512
Бесплатно скачать Реферат: Конспект лекций по дискретной математике