Реферат: Конструкторское обеспечение производства

Твердость материалов. Твердостью называется способность металла оказывать сопротивление проникновению в него другого, более твердого тела.

Твердость - одно из важнейших механических свойств металлов. От степени твердости зависит возможность использования металла для изготовления различных деталей или инструментов. Твердость влияет также на обрабатываемость металла: чем тверже металл, тем больше усилий требуется для его обработки. Твердость определяют различными способами.

Наибольшее применение получили следующие способы испытания твердости металлов:

1. вдавливание стального закаленного шарика (твердость по Бриннелю);

2. вдавливание вершины алмазного конуса (твердость по Роквеллу);

3. вдавливание вершины алмазной пирамиды (твердость по Виккерсу).

Применяется также испытание ударным вдавливанием шарика.

Химический состав. Химический состав материалов в машиностроении является основным классификационным признаком, определяющим их марку.

Например: по химическому составу сталь делится на углеродистую и легированную.

Влияние примесей на свойства материалов очень велико, даже в очень незначительных количествах. Углерод (С) в стали находится обычно в виде химического соединения Fe3C, называемого цементитом.

С увеличением содержания углерода до 1,2% твердость, прочность и упругость стали увеличиваются, но пластичность и сопротивление удару понижаются, а обрабатываемость и свариваемость ухудшаются.

Шероховатость.

Шероховатость поверхности - совокупность микронеровностей обработанной поверхности с относительно малыми шагами на базовой длине. Шероховатость поверхности описывается набором параметров, характеризующих среднюю и максимальную высоты неровностей и их ширины, средние расстояния между ними и т.д. Значения параметров для различных типов изделий и условий их эксплуатации устанавливаются стандартами. Влияние шероховатости на работу деталей машин многообразно:

1. шероховатость поверхности может нарушать характер сопряжения деталей;

2. в стыковых соединениях из-за значительной шероховатости снижается жесткость стыков;

3. шероховатость поверхности валов разрушает контактирующие с ними различного рода уплотнения;

4. влияет на точность измерения.

Геометрические отклонения поверхностей

Геометрическими отклонениями поверхностей являются: отклонение от прямолинейности. Виды: выпуклость - отклонение от прямолинейности, при котором удаление точек реального профиля от прилегающей прямой уменьшается от краев к середине. Вогнутост ь - отклонение от прямолинейности, при котором удаление точек реального профиля от прилегающей прямой увеличивается от краев к середине.

Отклонение от плоскостности - наибольшее расстояние от точек реальной поверхности до прилегающей плоскости в пределах нормируемого участка.

Отклонение от круглости - наибольшее расстояние от точек реального профиля до прилегающей окружности.

Отклонение от цилиндричности - наибольшее расстояние от точек реальной поверхности до прилегающего цилиндра в пределах нормируемого участка.

Отклонение профиля продольного сечения - наибольшее расстояние от точек образующих реальной поверхности, лежащих в плоскости, проходящей через ее ось, до соответствующей стороны прилегающего профиля в пределах нормируемого участка. Виды: конусообразность - отклонение профиля продольного сечения, при котором образующие прямолинейны, но не параллельны; седлообразность - отклонение профиля продольного сечения, при котором образующие непрямолинейны и диаметры уменьшаются от краев к середине сечения; бочкообразность - отклонение профиля продольного сечения, при котором образующие непрямолинейны и диаметры увеличиваются от краев к середине сечения.

Отклонение от параллельности плоскостей - разность наибольшего и наименьшего расстояний между плоскостями в пределах нормируемого участка.

Отклонение от перпендикулярности плоскостей - отклонение угла между плоскостями от прямого угла (90°), выраженное в линейных единицах на длине нормируемого участка.

Отклонение наклона плоскости относительно плоскости или оси (или прямой) - отклонение угла между плоскостью и базовой плоскостью или базовой осью (прямой) от номинального угла, выраженное в линейных единицах на длине нормируемого участка.

Отклонение наклона оси (или прямой) относительно оси (прямой) или плоскости - отклонение угла между осью поверхности вращения (прямой) и базовой осью или базовой плоскостью от номинального угла, выраженное в линейных единицах на длине нормируемого участка.

Отклонение от соосности - наибольшее расстояние между осью рассматриваемой поверхности вращения и базой (осью базовой поверхности ли общей осью двух или нескольких поверхностей) на длине нормируемого участка.

Отклонение от симметричности - наибольшее расстояние между плоскостью симметрии (осью) рассматриваемого элемента (или элементов) и базовой (плоскостью симметрии базового элемента или общей плоскостью симметрии двух или нескольких элементов) в пределах нормируемого участка.

Позиционное отклонение - наибольшее расстояние между реальным расположением элемента (его центра, оси или плоскости симметрии) и его номинальным расположением в пределах нормируемого участка.

Отклонение от пересечения осей - наименьшее расстояние между осями, номинально пересекающимися.

Радиальное биение - разность наибольшего и наименьшего расстояний от точек реального профиля поверхности вращения до базовой оси в сечении плоскостью, перпендикулярной базовой оси.

Торцевое биение - разность наибольшего и наименьшего расстояний от точек реального профиля торцовой поверхности до плоскости, перпендикулярной базовой оси.

Биение в заданном направлении - разность наибольшего и наименьшего расстояний от точек реального профиля поверхности вращения в сечении, рассматриваемой поверхности конусом, ось которого совпадает с базовой осью, а образующая имеет заданное направление, до вершины этого конуса.

Отклонение формы заданного профиля - наибольшее отклонение точек реального профиля от номинального профиля, определяемое по нормали к номинальному профилю в пределах нормируемого участка.

Отклонение формы заданной поверхности - область в пространстве, ограниченная двумя поверхностями, эквидистантными номинальной поверхности и отстоящие друг от друга на расстоянии, равном допуску формы заданной поверхности в диаметральном выражении или удвоенному допуску формы заданной поверхности в радиусном выражении.

Остаточные напряжения

В заготовке, поступающей на металлорежущий станок, имеются внутренние напряжения, которые сохраняются при отсутствии внешних сил и потому называются остаточными.

Различают остаточные напряжения первого рода, охватывающие большую часть заготовки; напряжения второго рода, образующиеся в микроскопических объемах - зернах, кристаллах; напряжения третьего рода, характерные для ячеек кристаллической решетки.

При механической обработке, когда с заготовки в виде припуска удаляют часть металла, происходит перераспределение внутренних остаточных напряжений, их временное равновесие нарушается. Основную роль здесь играют напряжения первого рода. Величина и характер распределения остаточных напряжений зависят от конфигурации заготовки, ее габаритных размеров и соотношения размеров отдельных элементов, способа получения исходной заготовки и других факторов. Большие остаточные напряжения возникают в исходных заготовках, получаемых литьем, ковкой, штамповкой, из-за неравномерного охлаждения разных элементов заготовки. В сварных, сварно-литых, сварно-штампованных конструкциях наибольшие внутренние напряжения возникают в местах сварки, где из-за местного нагрева и охлаждения происходят неоднородные объемные изменения. Структурные превращения металла и диффузионные процессы при сварке также способствуют появлению остаточных напряжений различного рода.

В особо неблагоприятных случаях остаточные напряжения могут вызвать не только значительное нарушение формы заготовки - коробление, изогнутость и другое, но и трещины.

Срезание поверхностных слоев металла освобождает ранее уравновешенные силы, и остаточные напряжения деформируют заготовку. Но и сам процесс резания также служит источником остаточных напряжений, которые возникают как результат пластической деформации поверхностного слоя и нагрева зоны резания.

Перераспределение внутренних напряжений происходит не сразу, а постепенно, и также постепенно происходит изменение формы заготовки и готовой детали. В практике бывают случаи, когда исходная заготовка, получившая большие остаточные напряжения, проходит черновую обработку. Частично перераспределяются внутренние напряжения и деформация заготовки. Получившиеся при этом искажения формы устраняют при чистовой обработке. Готовую деталь, если она годная, ставят на машину, а через некоторое время уже при эксплуатации выясняется, что деталь быстро изнашивается, причина этого - ее деформация, которая произошла после того, как деталь полностью обработали.

Вот почему необходимо уделять самое серьезное внимание устранению внутренних напряжений. Самый простой путь устранения внутренних напряжений - разделение обработки резанием на несколько этапов. На первом этапе выполняют черновую обработку, удаляя наибольшую часть припуска с поверхностей заготовки. Затем передают заготовку на получистовую обработку и заканчивают изготовление детали на третьем этапе - чистовой обработке. Так как обычно заготовки обрабатывают партиями, а черновую, получистовую и чистовую обработки ведут на разных станках, а иногда и в разных цехах, то между черновой и полу чистовой обработками проходит определенное время. За это время происходит в основном перераспределение внутренних напряжений и деформация заготовки. Чем больше промежуток времени между черновой и чистовой обработками, тем меньше опасность искажения формы готовой детали.

Для мелких и средних отливок эффективным способом снятия внутренних напряжений является искусственное старение - специальный процесс термической обработки. Отливку помещают в печь, нагревают до температуры 500-600° С и выдерживают в течение 1-6 ч (чем крупнее отливка, тем больше выдержка). Затем отливку медленно охлаждают вместе с печью таким образом, чтобы все части отливки (тонкие и толстые) охлаждались равномерно. Скорость охлаждения составляет 25-75 град/ч. Когда температура отливки снизится до 200-250° С, ее вынимают из печи и окончательно охлаждают на воздухе.

Для снятия напряжений, полученных при ковке, штамповке и литье, применяют также отжиг - нагрев до температуры 400 - 600° С с выдержкой 2,5 мин на 1 мм толщины сечения заготовки, а для сварных заготовок - высокотемпературный отпуск с нагревом до 600-650° С. Отжигают также заготовки, получаемые из проката. Вследствие больших пластических деформаций при прокатке в поверхностных слоях заготовок образуются значительные растягивающие, а во внутренних слоях сжимающие напряжения. Если с такой заготовки снимать неравномерный припуск, то ее форма из-за перераспределения внутренних напряжений может измениться. Поэтому, например, после фрезерования длинных шпоночных канавок на валах, изготовляемых из проката, может происходить искривление вала. Для исправления кривизны заготовок валов, осей, стержней, длинных планок и т.д. их правят в холодном состоянии. В процессе правки происходит упругая, а затем пластическая деформация.

Тщательная правка позволяет почти полностью устранить кривизну заготовки, вызванную действием остаточных напряжений. Но при правке в заготовке появляются новые напряжения. При дальнейшей чистовой обработке (а еще хуже - в работающей машине) эти остаточные напряжения могут вызвать новые искажения формы, поэтому для ответственных деталей правку применять нежелательно.

Качество поверхностного слоя

В процессе механической обработки поверхностный слой детали испытывает со стороны режущего инструмента силовое и тепловое воздействие. Происходит упруго-пластическое деформирование металла поверхностного слоя. При этом металл приобретает особые свойства, существенно отличающиеся от исходных. Он упрочняется (наклёпывается), в нем возникают остаточные напряжения. Помимо этого режущий инструмент оставляет следы на обработанной поверхности. Возникают микронеровности (шероховатость) на поверхности, высота, форма и шаг которых зависят от многих факторов. Шероховатость поверхности, наклеп и остаточные напряжения определяют в совокупности сущность понятия "качество поверхностного слоя".

Формированию качества поверхностного слоя детали уделяется пристальное внимание. Обусловлено это тем, что разрушение деталей при эксплуатации, как правило, начинается с поверхности, так как поверхностные слои оказываются наиболее нагруженными и подвергаются неблагоприятному воздействию внешней среды. В связи с этим от состояния поверхностного слоя в значительной мере зависят эксплуатационные свойства детали: износостойкость, усталостная прочность, коррозионная стойкость и др. С увеличением глубины и степени наклепа повышаются износостойкость и усталостная прочность деталей машин, эксплуатируемых при нормальной температуре. Однако для деталей из жаропрочных сталей и сплавов (ЭИ6Т7, ЭИ826, ЭИ929), например, лопаток газовых турбин, работающих при высоких температурах (800°С), наклеп оказывается вредным, снижающим сопротивление усталости. Что же касается остаточных напряжений, возникающих в процессе обработки в поверхностном слое деталей, то они не оказывают влияния на износостойкость. Не зависят от величины и знака остаточных напряжений и характеристики усталости деталей из жаропрочных сплавов, работающих при высоких температурах. Однако совсем иная роль остаточных напряжений в деталях, испытывающих циклически изменяющиеся во времени нагрузки при нормальной температуре. В этом случае при наличии в поверхностном слое детали остаточных напряжений сжатия предел выносливости ее увеличивается, тогда как напряжения растяжения снижают сопротивление усталости. Наконец высота шероховатости, направление штрихов обработки, форма и шаг неровностей, размеры опорной поверхности, т.е. параметры, определяющие микрорельеф обработанной поверхности, оказывают весьма сильное влияние на эксплуатационные свойства деталей машин и приборов.

В связи с этим технологический процесс изготовления деталей должен разрабатываться с учетом условий, в которых они в дальнейшем будут работать. При этом необходимо подбирать такие методы и режимы обработки, которые обеспечивали бы оптимальное, с точки зрения эксплуатационных свойств детали, качество поверхностного слоя. Параметры качества поверхностного слоя (глубина и степень наклепа, величина и знак остаточных напряжений) в значительной степени зависят от теплового фактора.

Микротвердость и толщина поверхностного слоя детали определяются процессами, сопутствующими механической обработке: упрочнением (наклепом) и разупрочнением (отдыхом, возвратом). Упрочнение - следствие воздействия сил на металл поверхностного слоя и его деформирования. Процесс упрочнения - атермичен. Глубина залегания упрочненного слоя и степень наклепа тем выше, чем больше величина сил, продолжительность их воздействия и интенсивность пластической деформации металла. При упрочнении повышаются предел прочности, твердость, снижается пластичность, изменяются другие физические свойства металла. Одновременно с процессом упрочнения протекает противоположный ему процесс разупрочнения, который стремится возвратить металл поверхностного слоя в исходное, ненаклепанное состояние. Интенсивность процесса разупрочнения полностью определяется значением температуры и временем ее воздействия на металл поверхностного слоя. При высокой температуре в зоне резания и достаточно продолжительном ее воздействии процесс разупрочнения может быть настолько интенсивным, что наклеп в поверхностном слое полностью снимается. Таким образом, конечное состояние металла поверхностного слоя детали после ее механической обработки определяется количественным соотношением процессов упрочнения и разупрочнения.

Если режим резания или другие условия обработки изменяются таким образом, что количество теплоты, генерируемой в зоне резания, возрастает, то следует ожидать уменьшения степени и глубины наклепанного слоя. Это относится к металлам, при обработке которых структурные изменения в поверхностном слое не происходят. Так, при точении сплава ЭИ437А с увеличением скорости резания от 2 до 5 м/мин глубина наклепанного слоя уменьшается от 141 до 97 мкм, а степень наклепа от 50 до 35%. Объяснение этому вытекает из роли и значения температурно-силового фактора в образовании наклепанного слоя. С увеличением скорости резания повышаются температура на поверхности детали и скорость деформирования. Если же материал не склонен к наростообразованию, то при этом непрерывно снижаются усилия резания и степень деформирования срезаемого слоя. Эти факторы способствуют снижению как глубины, так и степени наклепа.

К-во Просмотров: 319
Бесплатно скачать Реферат: Конструкторское обеспечение производства