Реферат: Корреляционный анализ
- тесноту связи;
- влияние отдельных факторов на общий результат.
Определение формы связи.
Определение формы связи сводится обычно к отысканию уравнения связно с факторами x,z,w,...v. Так, линейное уравнение зависимости результативного признака от двух факторных определяется по формуле
=a0 +a1 x+a2 z
Для определения параметров а0 , a1 и а2 , по способу наименьших квадратов необходимо решить следующую систему трех нормальных уравнений:
Измерение тесноты связи.
При определении тесноты связи для множественной зависимости пользуются коэффициентом множественной (совокупной) корреляции, предварительно исчислив коэффициенты парной корреляции. Так, при изучении связи между результативным признаком y и двумя факторными признаками - х и z, нужно предварительно определить тесноту связи между у и х, между у и z, т.е. вычислить коэффициенты парной корреляции, а затем для определения тесноты связи результативного признака от двух факторных исчислить коэффициент множественной корреляции по следующей формуле:
где rxy , rzy , rzx - парные коэффициенты корреляции.
Коэффициент множественной корреляции колеблется в пределах от 0 до 1. Чем он ближе к 1, тем в большей мере учтены факторы, определяющие конечный результат.
Если коэффициент множественной корреляции возвести в квадрат, то получим совокупный коэффициент детерминации, который характеризует долю вариации результативного признака у под воздействием всех изучаемых факторных признаков.
Совокупный коэффициент детерминации, как и при парной корреляции, можно исчислить по следующей формуле:
R2 =σ2 y /σ2 y
где σ2 Y - дисперсия факторных признаков,
σ2 y - дисперсия результативного признака.
Однако вычисление теоретических значений Y при множественной корреляции и сложно, и громоздко. Поэтому факторную дисперсию σ2 Y исчисляют по следующей формуле:
Проверка существенности связи при множественной корреляции по сути ничем не отличается от проверки при парной корреляции.
Поскольку факторные признаки действуют не изолированно, а во взаимосвязи, то может возникнуть задача определения тесноты связи между результативным признаком и одним из факторных при постоянных значениях прочих факторов. Она решается при помощи частных коэффициентов корреляции. Например, при линейной связи частный коэффициент корреляции между х и у при постоянном z рассчитывается по следующей формуле:
В настоящее время на практике широкое распространение получил многофакторный корреляционный анализ;
6 Методы измерения тесноты связи
Измерение тесноты связи при помощи дисперсионного и корреляционного анализа связано с определенными сложностями и требует громоздких вычислений. Для ориентировочной оценки тесноты связи пользуются приближенными показателями, не требующими сложных, трудоемких расчетов. К ним относятся: коэффициент корреляции знаков Фехнера, коэффициент корреляции рангов, коэффициент ассоциации и коэффициент взаимной сопряженности.
Коэффициент корреляции знаков основан на сопоставлении знаков отклонений от средней и подсчете числа случаев совпадения и несовпадения знаков, а не на сопоставлении попарно размеров отклонений индивидуальных значений факторного и результативного признаков от средней
(x- ) и (y- ):
i=(u-v)/(u+v),
где u - число пар с одинаковыми знаками отклонений х и у от и ;