Реферат: Космологические модели вселенной
На опровержение второго начала термодинамики были брошены силы всех материалистически мыслящих ученых. Так, в 1895 г. Людвиг Больцман предложил свою вероятностную трактовку второго начала. По его гипотезе, возрастание энтропии происходит потому, что состояние беспорядка всегда более вероятно, чем состояние порядка. Но это не означает, что процессы противоположного характера, то есть самопроизвольные с уменьшением энтропии, абсолютно невозможны. Они в принципе возможны, хотя и крайне маловероятны.
Всюду мы наблюдаем, как тепло от более горячего тела переходит к более холодному. Однако в принципе возможно и другое: кусок льда, брошенный в печь, увеличит ее жар. Не исключено и такое событие, что все молекулы воздуха в нашей комнате соберутся вдруг в одном ее углу, а вы погибнете от удушья в другом. Наконец, возможно, что обезьяна, посаженная за пишущую машинку, случайно выстучит пальцем сонет Шекспира. Все эти события возможны, но вероятность их близка к нулю. Такова же, по Больцману, вероятность существования нас с вами.
Больцман не сомневался, что Вселенная бесконечна в пространстве и времени. В основном и почти всегда она пребывает в состоянии тепловой смерти. Однако иногда в некоторых ее районах возникают крайне маловероятные отклонения (флуктуации) от обычного состояния Вселенной. К одной из них принадлежит Земля и весь видимый нами космос. В целом же Вселенная - безжизненный мертвый океан с некоторым количеством островков жизни.
Гипотеза Больцмана хотя и подвергла сомнению всеобщность и строгую обязательность второго начала, не смогла удовлетворить оптимистически мыслящих ученых. К тому же и расчеты показали, что вероятность возникновения такой гигантской флуктуации в пространстве практически равна нулю.
Были и другие попытки объяснить этот термодинамический парадокс, но они так же не увенчались успехом.
Три космологических парадокса: фотометрический, гравитационный и термодинамический - заставили ученых серьезно усомниться в бесконечности и вечности Вселенной. Именно -они заставили А. Эйнштейна в 1917г. выступить с гипотезой о конечной, но безграничной Вселенной.
Предположим, что вещество, составляющее планеты, звезды и звездные системы, равномерно рассеяно по всему мировому пространству. Тем самым мы допускаем, что Вселенная всюду однородна и к тому же изотропна, то есть во всех направлениях имеет одинаковые свойства. Будем считать, что средняя плотность вещества во Вселенной выше так называемой критической плотности. Если все эти требования соблюдены, мировое пространство, как это доказал Эйнштейн, замкнуто и представляет собой четырехмерную сферу, для которой верна не привычная школьная геометрия Евклида, а геометрия Римана.
Неевклидовы геометрии
Мы привыкли, что в двухмерном пространстве, то есть на плоскости, есть своя, присущая только плоскости геометрия. Так, сумма углов в любом треугольнике равна 180°. Через точку, лежащую вне прямой, можно провести только одну прямую, параллельную данной. Это - постулаты Евклидовой геометрии. По аналогии предполагается, что и реальное трехмерное пространство, в котором мы с вами существуем, есть евклидово пространство. И все аксиомы плоскостной геометрии остаются верными и для пространства трех измерений. Такой вывод на протяжении многих веков не подвергался сомнению. Лишь в прошлом веке независимо друг от друга русский математик Николай Лобачевский и немецкий математик Георг Ри-ман усомнились в общепризнанном мнении. Они доказали, что могут существовать и иные геометрии, отличные от евклидовой, но столь же внутренне непротиворечивые.
Итак, пятый постулат Евклида утверждает, что через точку вне прямой можно провести лишь одну прямую, параллельную данной. Логически рассуждая, легко увидеть еще две возможности:
- через точку вне прямой нельзя провести ни одной прямой, параллельной данной (постулат Римана);
- через точку вне прямой можно провести бесчисленное множество прямых, параллельных данной (постулат Лобачевского).
На первый взгляда эти утверждения звучат абсурдно. На плоскости они и в самом деле неверны. Но ведь могут существовать и иные поверхности, где имеют место постулаты Римана и Лобачевского.
Представьте себе, например, поверхность сферы. На ней кратчайшее расстояние между двумя точками отсчитывается не по прямой (на поверхности сферы прямых пет), а по дуге большого круга (так называют окружности, радиусы которых равны радиусу сферы). На земном шаре подобными кратчайшими, или, как их называют, геодезическими, линиями служат меридианы. Все меридианы, как известно, пересекаются в полюсах, и каждый из них можно считать прямой, параллельной данному меридиану. На сфере выполняется своя, сферическая геометрия, в которой верно утверждение: сумма углов треугольника всегда больше 180°. Представьте себе на сфере треугольник, образованный двумя меридианами и дугой экватора. Углы между меридианами и экватором равны 90°, а к их сумме прибавляется угол между меридианами с вершиной в полюсе. На сфере, таким образом, нет непересекающихся прямых.
Существуют и такие поверхности, для которых оказывается верным постулат Лобачевского. К ним относится, например, седловидная поверхность, которая называется псевдосферой. На ней сумма углов треугольника меньше 180°, и невозможно провести ни одной прямой, параллельной данной.
После того, как Риман и Лобачевский доказали внутреннюю непротиворечивость своих геометрий, возникли законные сомнения в евклидовом характере реального трехмерного пространства. Не является ли оно искривленном наподобие сферы или псевдосферы? Конечно, наглядно представить себе искривленность трехмерного пространства невозможно. Можно лишь рассуждать по аналогии. Поэтому, если реальное пространство не евклидово, а сферическое, не следует воображать его себе в виде некоторой обычной сферы. Сферическое пространство есть сфера, но сфера четырехмерная, не поддающаяся наглядному представлению. По аналогии можно сделать вывод, что объем такого пространства конечен, как конечна поверхность любого шара - ее можно выразить конечным числом квадратных сантиметров. Поверхность всякой четырехмерной сферы также выражается в конечном количестве кубометров. Такое сферическое пространство не имеет границ и в этом смысле - безгранично. Летя в таком пространстве по одному направлению, мы в конце концов вернемся в исходную точку. Так же и муха, ползущая по поверхности шара, нигде не найдет границ. В этом смысле и поверхность любого шара безгранична, хотя и конечна. То есть безграничность и бесконечность - разные понятия.
Модель расширяющейся вселенной
Итак, вернемся к Эйнштейну, из расчетов которого следовало, что наш мир является четырехмерной сферой. Объем такой Вселенной может быть выражен хотя и очень большим, но все же конечным числом кубометров. В принципе возможно облететь всю замкнутую Вселенную, двигаясь все время в одном и том же направлении. Такое воображаемое путешествие подобно земным кругосветным путешествиям. Но конечная но объему Вселенная в то же время безгранична, как не имеет границ поверхность любой сферы. Вселенная по Эйнштейну, содержит хотя и большое, но все-таки конечное число звезд и звездных систем, а поэтому к ней фотометрический и гравитационный парадоксы просто неприменимы. В то же время призрак тепловой смерти тяготеет и над Вселенной Эйнштейна -такая Вселенная, конечная в пространстве, неизбежно идет к своему концу во времени. Вечность ей не присуща.
Пять лет спустя, в 1922 г., советский физик Александр Фридман на основании строгих расчетов показал, что Вселенная Эйнштейна никак не может быть стационарной, неизменной, как это считал Эйнштейн. Вселенная непременно должна расширяться, причем речь идет о расширении самого пространства, то есть об увеличении всех расстояний мира. Вселенная Фридмана напоминала раздувающийся мыльный пузырь, у которого и радиус, и площадь поверхности непрерывно увеличиваются.
Идея Фридмана поначалу показалась Эйнштейну слишком смелой и необоснованной. Он даже заподозрил ошибку в вычислениях. Но, ознакомившись с ними, он публично признал, что мы живем в расширяющейся Вселенной.
Из расчетов Фридмана вытекали три возможных следствия:
Вселенная и ее пространство расширяются с течением времени;
Вселенная сжимается; во Вселенной чередуются через большие промежутки времени циклы сжатия и расширения.
Доказательства в пользу модели расширяющейся Вселенной были получены в 1926 г., когда американский астроном Э. Хаббл открыл при исследовании спектров далеких галактик (существование которых было доказано в 1923 г. тем же Хабб-лом) красное смещение спектральных линий (смещение линий к красному концу спектра), что было истолковано как следствие эффекта Допплера (изменение частоты колебаний или длины волн из-за движения источника излучения и наблюдателя по отношению друг к другу) - удаление этих галактик друг от друга со скоростью, которая возрастает с расстоянием. По последним измерениям, это увеличение скорости расширения составляет примерно 55 км/с на каждый миллион парсек. После этого открытия вывод Фридмана о нестационарности Вселенной получил подтверждение и в космологии утвердилась модель расширяющейся Вселенной.
Наблюдаемое нами разбегание галактик есть следствие расширения всего пространства замкнутой конечной Вселенной. При таком расширении пространства все расстояния во Вселенной увеличиваются подобно тому, как растут расстояния между пылинками на поверхности раздувающегося мыльного пузыря. Каждую из таких пылинок, как и каждую из галактик, можно с полным правом считать центром расширения.
Дальнейшее развитие модель расширяющейся Вселенной получила в послевоенные годы и особенно в последние десятилетия благодаря исследованиям известных отечественных космологов Зельдовича и Новикова. Уточнены величины, характеризующие скорость расширения Вселенной, рассмотрены различные варианты моделей Вселенной в зависимости от средней плотности вещества в мировом пространстве, достаточно подробно намечен ход эволюции Вселенной от момента начала ее расширения.
Какое же будущее ждет нашу Вселенную? Мы уже упоминали, что расчеты Фридмана допускали три варианта развития событий. По какому из них идет эволюция Вселенной, зависит от отношения гравитационной энергии к кинетической энергии разлетающегося вещества. Это отношение можно свести к отношению плотности вещества во Вселенной к критической плотности вещества, которую мы уже упоминали.
Если кинетическая энергия разлета вещества преобладает над гравитационной энергией, препятствующей разлету, то силы тяготения не остановят разбегания галактик и расширение Вселенной носит необратимый характер. Это выражается условием р1 р^ -< 1, (где р - плотность вещества во Вселенной, р ^ - критическая плотность вещества). Этот вариант динамичной модели Вселенной называют “открытой Вселенной”. Если же преобладает гравитационное взаимодействие, чему соответствует условие р/ р^ > \ , то темп расширения со временем замедлится до полной остановки, после чего начнется сжатие вещества вплоть до возврата Вселенной в исходное состояние сингулярности (точечный объем с бесконечно большой плотностью). Для наблюдателя сигналом перехода от расширения к сжатию станет смена красного смещения линий химических элементов в спектрах удаленных галактик на фиолетовое смещение. Такой вариант модели назван “закрытой Вселенной”. В случае, когда силы гравитации точно равны кинетическим силам, то есть когда р/ р,, = 1 , расширение не прекратится, но его скорость со временем будет стремиться к нулю. Через несколько десятков миллиардов лет после начала расширения Вселенной наступит состояние, которое можно назвать квазистационарным. Теоретически возможна и пульсация Вселенной.
Возникает естественный вопрос: какой из трех вариантов реализуется в нашей Вселенной? Ответ на него остается за наблюдательной астрономией, которая должна оценить современную среднюю плотность вещества во Вселенной и уточнить значение постоянной Хаббла (скорость расширения галактик). Пока надежные оценки этих величин отсутствуют. На основании современных данных создается впечатление, что средняя плотность вещества во Вселенной близка к критическому значению, она либо немного больше, либо немного меньше. Но от этого “немного” зависит будущее Вселенной, правда, весьма отдаленное. Постоянная Хаббла позволяет оценить время, в течение которого продолжается процесс расширения Вселенной. Получается, что оно не меньше 10 млрд. и не более 19 млрд. лет. Наиболее вероятным временем существования расширяющейся Вселенной считают 15 млрд. лет.
Некоторые трудности гипотезы расширяющейся вселенной
Все, что здесь до сих пор было сказано, - это только гипотезы, основанные на некоторых реальных фактах. Однако те же самые факты можно трактовать и иначе.
Так, неоднократно предпринимались попытки истолковать красное смещение не как следствие эффекта Доннлера и расширения Вселенной, а как следствие уменьшения энергии и собственной частоты фотонов при движении их в течение многих миллионов лет в межгалактическом пространстве, в результате взаимодействия с гравитационными полями, фоном нейтрино, не наблюдаемой пока материей. Подобные попытки отвергались на том основании, что они были основаны на допущении некоторого неизвестного еще закона природы и феномена взаимодействия излучения с другими видами материи.