Реферат: Кремний, полученный с использованием геттерирования расплава

В бездефектной техн ологии изготовления ИС для уменьшения влияния термодефектов используются ме­ тоды пассивного геттерирования примесей в пластинах. К таким методам относятся "внешнее геттсрирование" - нанесение внешних покрытий (поликремния, Si-, N^, переходных металлов) или механических по­ вреждений на нерабочую сторону кремниевой пластины и "внутреннее геттерирование" — намеренное обе спече­ние путем термообработок выделений второй фазы Si0,, на которых адсорбируются микродефекты, при­меси тяжелых и щелочных металлов. Однако в резуль­тате таких воздействий на пластины ухудшаются меха­нические свойства, что особенно заметно на подложках диаметром 100 и более миллиметров.

Процесс образования геттерирующей зоны проис­ходит в несколько стадий, при этом самая высокая температура термообработки (ТО) не превышает lOOO^C, в то время как многоступенчатая технология изготовления ИС включает более высокотемпературные операции, например диффузию, эпитаксию. Известно, что при температурах выше 1000° С кислород из выделе­ний вновь переходит в состояние твердого раствора, и при последующих термоциклах (430-500 и 600-800^ 0 опять появляются доноры, разрушаются комплексы примесей и микродефектов, что, в свою очередь, приво­дит к нарушению термостабильности, снижению выхода годных, увеличению отказов.

Активное воздействие на дефекты и примеси пред­полагает ле гирование монокристаллов в процессе их выращивания добавками, оказывающими влияние на свойства, состав расплава и твердого тела. При этом легирующий компонент должен удовлетворять следую­щим требованиям:

— коэффициент распределения, значительно отли­чающийся от единицы;

— эффективное изменение коэффициента распреде­ления удаляемых примесей;

— отсутствие вредного влияния атомов "геттера" на свойства полупроводника.

Использование в качестве геттера водорода, пред­ложенное Декоком, не нашло применения в промыш­ленности, так как водород в процессе отжига удаляется из кристалла, вновь освобождая кислород и оставляя после себя напряженные участки кристаллической ре­шетки.

Добавление в кремний изоморфных примесей (Ge, Pb, Sn) сказывается лишь на кинетике образования термодоноров, при этом сохраняется зависимость их поведения от температуры.

Легирование металлами, изобарный потенциал реак­ции окисления которых больше, чем изобарный потен­циал окисления кремния при температуре его плавления, дает возможность связывать кислород и порождаемые им термодефекты. Для этой цели могут быть выбраны примеси, образующие с кислородом более химически и термически стойкие оксиды, чем Si0^, которыек тому же электронейтральны в кремнии. Та­кими примесями являются щелочноземельные металлы(Mg, Са, Sr, Ва), электрически нейтральные вследствие образования с кремнием полупроводнико­вых соединений с ковалентной связью [1,2], и пере­ходные металлы IV группы(Ti, Zr, Hf), не йтральные по причине сходства строения электронных оболочек их атомов с атомами кремния и также образующие стехиометрические фазы с кремнием. Экспериментальные дан­ные показывают, что при добавлении этих металлов в расплав кислород связывается в жидком кремнии в прочные комплексы, содержащие атомы кремния и кислорода, коэффи циент распреде ления которых гораздо меньше, чем у кислорода, который не связан в компле ксы. В результате введения примесей - геттеров содержание кислорода в выращенных методом Чохральского монокристаллах может быть снижено до 2- 10^ 7 смЗ .

Характер распределения Ti, Zr и Hf в монокристал­лах вдоль оси роста аналогичен наблюдавшемуся ране е для щелочноземельных металлов в германии и кремнии, а также для примеси хрома в арсениде галл ия. Методами химико-спектрального и активационного анализов, методом радиоактивных индикаторов (для циркония и гафния) показано, чт о в начальной части формируется концентрационный профиль со снижением концентра­ции, затем переходная область, за которой следуе т об­ласть нарастания концентрации вплоть до выпадения второй фазы. Распределение примесей-геттеров, а также уровень их конце нтрации в твердой фаз е свиде тельству­ет о том, что их взаимодействие с кислородом происхо­дит в расплаве с последующим ра спределением атомов металла, связанного и не связанного с кислородом, с различными коэффициентами сегрегации. Более высо­кая концентрация примеси в начале слитка по сравне­нию со средней его частью противоречит диаграммам состояния кремний- титан (цирконий, гафний), имею­щ им эвте ктический пе реход, соответственно которому элементы IV группы должны иметь коэффициент рас­пределения меньше единицы. Отсутствие зависимости характера распределения от условий - перемешивания расплава подтверждает данные о взаимодействии приме­сей с кислородом. Следствием такого взаимодействия является различное поведение растворенного металла при кристаллизации кремния. Образуя комплексы, со­ответствующие соединениям с высокой те мпературой плавления и прочными химическими связями, примесь ме таллаIV -B может иметь коэффицие нт распределения больше единицы. Коэффициенты распределения титана, циркония и гафния, не связанных с кислородом, меньше единицы, и эти металлы оттесняются в конечную часть слитка. Снижение содержания кислорода в монокри­сталлах, выращенных методом Чохральского с добав­кой геттера, по сравне нию с обычными монокристал­лами подтверждает факт взаимодействия этих приме сей в расплаве. Источником обнаруженного оптическиак­тивного кислорода, по-ви димому, служит тигель (Si 0,) .

Физическая модель процесса

внутреннего геттерированияв кре мниевой

технологии .

Как известно, металлически е примесиAu, Fe, Ni, Си и другие приводят к возникновен ию генерационно-рекомбинационных центров в акти вных областях приборов на основе кремния, что в свою очередь вызывает деградацию свойств приборов. Совокупность техно логич еских приемов, позво­ляющих снизить концентраци ю таких центров, локализуя их вблизи преципитатов Si0x (xw 2), расположенных вдали от активных областей при­боров, называется методом внутреннего геттерирования (ВГ)..

По технологии ВГ накоплен обширный фак­ти ческий материал, однако физи ческие принци пы его механизма в настоящее время окончатель­но не установлены [1, 2) . Ши рокое распростра­нение, например, получили представления о том, что центрами геттерирования являются дисло­кации и дефекты упаковки, возникающи е вслед­ствие релаксации упругих полей и пересыщения по межузельному кремнию в процессе преципи­тации кислорода при Г> 700° С. Однако эти пред­ставления не являются универсальными, что бы­ло доказано рядом и сследований. Так, в работе [ 3) показано, что в ряде случаев эффект гетте­рирования проявляе тся и в отсутствие дислока­ций и дефектов упаковки, при этом сам кисло­родный преципитат является геттером. Другие авторы [41 обнаружили гексагональные и ром­бические дислокационные петли в отсутствие ки слородных преципитатов, на основании чего сделано предположение о том, что дислокацион­ные петли возникают при высокотемпературном отжиге вследствие растворения преципитатов, образовавши хся ранее во. время низкотемпера­турного отжига.

В данной работе представлены результаты исследований физических закономерностей про­цесса ВГ, выполненных на кафедре общей физи­ки МИЭТ, в которых развита модель дальнодействующего механи зма взаимодействи я при месь-центр геттерирования. Рассмотрена модель комп­лекса примесь-точечный дефект, рассчитаны па­раметры таких комплексов и найдено и х неод­нородное распределение в упругом поле преципи­тата. Представлена также диффузионная модель ВГ на основе взаи модействия дипольных комп­лексов с ки слородным преципитатом.

Комплексы приме сь-точе чн ый дефект и их неоднородное распределени е вблизи центра гетгерировання

Принципиальное отличие упругого взаимо­действия примеси с дислокацией от взаимодей­ствия со сферическим геттером проявляется в том, что упругое поле последнего характеризу­ется чисто сдвиговой деформацией и энергия уп­ругого взаимодействия равна нулю :

где К — модуль всестороннего сжатия материа­ла среды,W o — изменение объема, обусловлен­ное примесным атомом, eii —дилатация упругого поля центра. Поэтому в условиях отсутствия ди-латацнонного взаи модействия и наличия пересы­щения по собственным дефектам дальнодейст-вующий механизм упругого взаимодействия мо­жет быть реализован взаимодействием диполь-ного типа. Дипольные свойства примесного ато­ма могут быть реализованы в случае образова­ния комплекса из двух точечных дефектов: атом примеси—собственный точечный дефект или атом примеси—атом другой примеси.

Количественной мерой взаимодействия комп­лекса точечных дефектов с упругим полем центра дилатации является тетрагональность поля уп­ругих искажений, создаваемых комплексом. В рамках континуальной теории упругости энергия точечного дефекта в поле eii задается выра­жением:

ТензорW ij , называемый тензором объемных де­формаций, полностью характеризует упругие свойства точечного дефекта. Для упругого дипо­ля с осевой симметрией он имеет вид :

n i и n j направляющие косинусы оси симмет­рии диполя.

Для последовательного . количественного опи­сания образования примесных сегрегаций вбли зи центра геттерирования необходимо знать па­раметрыW o иW 1, характеризующие отдельный комплекс иопределить рас­пределение таких комплексов в пространстве, окружающем центр геттерирования. Расч еты характеристик комплекса проводились методом молекулярной статики. За основу был принят так называемый метод флекс-1 (метод гибкой гра­ницы с перекрывающимися областями). Кри­сталл разбивается на три области. Область 1, непосредственно окружающая кристалл, рассмат­ривается как дискретная. В этой сильно иска­женной области координаты атомов учитывают­ся индивидуально, а энергия рассчитывается с помощью межатомного потенциала. Область 3 , наиболее удаленная от дефекта, представляется как упругий континуум. Вклад этой области в общую энергию системы определяется решением уравнений теории упругости, т.е. величинамиW 0иW1 и упругими постоянными среды. Область 2 является промежуточной. Координаты атомов в э той области определяются коллективно также » соответствии с теорией упругости, а вклад в э нергию системы — с помощью межатомного потенциала. В ходе расчета минимизируется полная энергия системы, являющаяся функцией координат атомов и двух переменныхW o иW 1, характеризующих дальнодействующее поле де­фекта. Решение этой вариационной задачи и дает искомые величины.

Расчеты проводились для моно- и дивакансии с межатомным потенциалом Плишкина — Подчиненова. Область 1 содержала 320 атомов в случае моновакансии и 319 атомов в случае дивакаисии, а область 2 содержала 1280 атомов. Дивакансия состояла из двух ваканси й в по ло­ жениях (0,0,0) и (1/2, 1 /2,0). Результаты расче­тов приведены в таблице.

Результмы ра счет ов компон ент тенз ора объемных деформаций для моно- и днвакансии .

Компонента Моновакансия Дивакансия
Wo, м ^-30 -0.75 -1.14
W1 , м^-30 0.00 -1.47

Из таблицы видно, что при образовании комп­лекса из двух точечных дефектов, каждый из которых создает в среде сферически симметрич­ное поле упругих искажений, получается дефект дипольного типа. Кроме того, при этом имеет ме­сто нарушение аддитивности изменения объема, вызванного дефектами .

Равновесное распределение диполей в упругом поле геттера задается соотношением:

где (Со - концентрация диполей вдали от цент­ ра. Энергия диполя в поле центра в соответст­вии с (1) определяется выражением

где эффективная поляризация дипольного облака определяется как

--> ЧИТАТЬ ПОЛНОСТЬЮ <--

К-во Просмотров: 306
Бесплатно скачать Реферат: Кремний, полученный с использованием геттерирования расплава