Реферат: Криптосистеми
.
Кожний первісний елемент породжує поле:
.
Криптоперетворення пов’язані з побудуванням пари ключів. Нехай є два користувачі А та В.
А | В |
ХА | ХВ |
![]() | ![]() |
де ХА , ХВ – випадкові ключі довжиною lk ;
YА , YВ – відкриті ключі.
При побудуванні використовуються властивості поля.
,
де r – сеансовий ключ.
Користувач А передає користувачу В пару . Потім користувач В обчислює:
.
Таким чином, перетворення в полі є зворотнім та однозначним.
Модель криптоаналітика заключається в тому, що необхідно знайти ХВ . Реалізуючи рівняння відносно ХВ одержимо секретний ключ. Стійкість проти атак в полі визначається складністю розв’язання рівняння .
Сутність асиметричних криптоперетворень в групі точок еліптичних кривих
За 20 років розроблено нові математичні апарати, які дозволяють ефективно розв’язувати рівняння, що реалізовані в полях та кільцях. В 90-х роках було запропоновано використовувати криптоперетворення, що базуються на перетвореннях в групі точок еліптичних кривих над полями GF(p), GF(2m ), GF(pm ).
Для випадку простого поля:
елементом перетворення є точка на еліптичній кривій, тобто ,що обчислюється за модулем р. Формується ключова пара:
, де
.
,
де G – базова точка на еліптичній кривій порядку
QA – відкритий ключ, точка на еліптичній кривій з координатами (ха , уа ).
Задача криптоаналітика знайти таємний ключ dA . Складність розв’язку цього рівняння набагато вище, ніж в полі. В полі – субекспоненційна складність, а в групі точок еліптичних кривих – експоненційна складність.
3. СИМЕТРИЧНІ КРИПТОПЕРЕТВОРЕННЯ
Застосовувані на практиці криптоперетворення розділяють на 2 класи по стійкості:
1. обчислювально стійкі.
2. ймовірно стійкі (доказово стійкі).
Основним показником, по якому оцінюються такого роду системи є безпечний час: