Реферат: Кубический нитрид бора

BN (гекс.) → BN (куб.) при высоких давлениях, имеют вид полиэдров, обычно тетраэдров или октаэдров. Они прозрачны, а их цвет зависит от наличия тех или иных примесей. Так, бор окрашивает кристаллы боразона, полученного из смесей, в коричневый или черный цвет, бериллий – в синий, сере – в желтый. Желтую окраски имеют также кристаллы боразона, полученного из смеси гексагонального нитрида бора с нитридом лития. Были получены также красные, белые и бесцветные кристаллы.

Плотность боразона составляет 3,45 г/см3 (ренгеновская плотность 3,47 г/см3 ). Твердость его при оценке по шкале Мооса оказалась соизмеримой с твердостью алмаза (10 баллов).

Данные о некоторых свойствах нитрида бора приводятся в табл. 1.

Соединение Т пл., ˚С

Теплота образования

ккал/моль

Период решетки

Удельный вес

г/см3

Микротвердость

Кг/мм2

Твердость по шкале Мооса

Ширина запрещенной зоны,

эВ

Т.Э.Д.С.

МкВ/гра.

BN(куб.) ~3000 - 3,615 3,45 - 10 ~5 (теор.) -

Таблица 1.

Электрические и оптические свойства

Измерение спектра отражения кубического нитрида бора (полученного с применением нитрида лития в качестве ’’катализатора’’), показали, что кристаллы обладают большим поглощением в интервалах от 7 до 9 эВ. Общий вид спектра поглощения похож на спектр поглощения алмаза, но характеризуется энергией, приблизительно на 2 эВ больше. Показатель преломления кубического нитрида бора составляет 2,22.

Зонная структура кубического нитрида бора рассчитана теоретически из зонной структуры алмаза методами теории возмущения (рис. 3). Максимум валентной зоны остается в точке = 0, однако минимум валентной зоны проводимости оказывается смещенным по оси. В результате значение ΔЕ возрастает до ~10 эВ, вдвое превышая значение ΔЕ для алмаза.

Исследуя влияние примесей на проводимость боразона показало, что присутствие в реакционной смеси металлического бериллия или его соли (от 0,01 до 1% (вес.)) способствует образованию кристаллов BN с проводимостью р – типа

Рис. 3. Зонная структура кубического нитрида бора.

Такие кристаллы обладали сопротивлением 103 ом·см, хотя иногда наблюдались и такие низкие сопротивления, как 2·102 ом·см при комнатной температуре. Значение энергии активации проводимости колебалось в зависимости от индивидуальности измеряемого кристалла (а возможно также и за счёт влияния контактов). На основе опыта по легированию других соединений типа AIII BV предполагается, что атомы бериллия могут замещать атомы бора или азота в решётке кубического нитрида бора.

Попытки создать в кристаллах боразона, полученных из системы B-N-Li, дырочную проводимость за счет добавки в реакционную смесь магния или цинка, не дали хороших результатов. Это, вероятно, связано с относительно большими размерами атомов указанных элементов и трудностью замещения ими атомов в структуре боразона.

Проводимость n-типа удавалось получить в кристаллах боразона при добавке в реакционную смесь избытка бора, а также серы, кремния и др.

Добавка бора придавала кристаллам тёмно-коричневую окраску. Такие кристаллы имели высокое удельное сопротивление.

Однако наиболее активное донорное действие проявила сера в количестве 0,3-3% оказалось возможным получить кристаллы, удельное сопротивление которых было 104 Ом ·см и иногда даже 103 Ом · см при 250 С. Предполагают, что атомы серы замещают атомы азота в кубическом нитриде бора. Энергия ионизации примесных центров равнялась 0,05 эВ.

При добавке в реакционную смесь соединений, содержащих углерод и азот, удавалось получить кристаллы с проводимостью n-типа, имевшие сопротивление 105 -107 Ом · см и энергию активации проводимости 0,28-0,41 эВ. Такие кристаллы имели жёлтую, коричневую или красно-коричневую окраску.

Наконец, электронная проводимость иногда наблюдалась на кристаллах боразона, полученных из реакционных смесей нитрид лития – нитрид бора или нитрид магния- нитрид бора без преднамеренно введенных легирующих добавок. Эти кристаллы обычно имели высокие сопротивления – порядка 106 -109 Ом · см при комнатной температуре. Возможно, что причиной электронной проводимости в этом случае служил кислород, который было очень трудно исключить из реакционной смеси ввиду высокой активности нитридов, входивших в шихту. Указанное предположение согласуется с тем, что использование в качестве катализатора нитрида магния, являющегося более сильным раскислителем, чем нитрид лития, получились более высокоомные кристаллы боразона. Исследование выпрямляющих свойств кристаллов кубического нитрида бора производились на паре кристаллов n-и p-типа, находящихся в контакте. Через такую пару пропускался слабый постоянный ток (10-6а ) при низком напряжении (5в) с помощью серебряных контактов.

Отношение прямого тока к обратному было довольно низким – от 2 до 20.

При 250 С самые большие токи пропускали так, что p-кристалл был положительным. Однако при температурах 300-4000 С направление выпрямления менялось для некоторых пар кристаллов. При охлаждении устанавливалось первоначальное направление выпрямления.

Дальнейший прогресс в изучении свойств кубического нитрида бора связан с получением крупных кристаллов подходящей формы, а также с разработкой технологии получения p-n-переходов.

Применение боразона .

Нитрид бора и материалы на его основе занимают заметное место в ряду важнейших инструментальных материалов и являются основой многих современных технологий Основанием для широкого применения нитрида бора в инструментах, послужила наибольшая твёрдость, приближающаяся к твёрдости алмаза. Термодинамические особенности полиморфизма нитрида бора обусловили появление большого количества материалов на основе его плотных модификаций и различных технологий его получения.

К-во Просмотров: 702
Бесплатно скачать Реферат: Кубический нитрид бора