Реферат: Квадратурная амплитудная модуляция

Рисунок 9

Представленные на графике результаты были получены на двухпроводной линии длиной 1300 метров (4000 футов) при диметре провода 0.5 мм (26 AWG). На линии имелось одно пассив-ное ответвление (bridge-tap) длиной около 10 метров (30 футов). Наличие пассивных отводов на линии при использовании алгоритма модуляции QAM является одним из факторов, которые приводят к существенному уменьшению значения SNR для принимаемого сигнала. На приведенной выше диаграмме красным пунктиром отмечено искажение спектра модулированного колебания - провал на частоте fс (5.4 МГц), которое вызвано именно наличием пассивного ответвления на линии.

Помехоустойчивость алгоритма КАМ.

Помехоустойчивость ал­горитма QAM обратно пропорциональна его спектральной эффектив­ности. Воздействие помех приводит к возникнове­нию неконтролируемых изменений амплитуды и фазы передаваемого по линии сигнала. При уве­личении числа кодовых точек на фазовой плоско­сти расстояние между ними (P) уменьшается и, следовательно, возрастает вероятность ошибок при распознавании вектора Zm * на приемной стороне. Предельный уровень допустимых амплитудных и фазовых искажений QAM-модулированного сигнала представляет собой круг диаметром P (рис. 10).

Рисунок 10

Центр этого круга совпадает с узлом квадратурной сетки на фазовой плоскости. Заштрихованные области на рисунке соответствуют координатам искаженного вектора QAM-модулированного ко­лебания при воздействии на полезный сигнал помехи, относительный уровень которой опре­деляется соотношением 20dB £ SNR £30dB.

На диаграмме, которая приведена на рисунке 11, сплошными линиями представлены зависимости ожидаемого значения BER (Bit Error Rate - вероятность ошибок) от величины SNR для различных вариантов алгоритма QAM.

Использование дополнительного кодирования (пунктирные линии), например, по алгоритму Рида-Соломона (Reed-Solomon) позволяет повысить помехоустойчивость модулированного сигнала.

Достоинства алгоритма.

Алгоритм квадратурной амплитудной модуляции является относительно простым в реализации и в то же время достаточно эффективным алгоритмом линейного кодирования xDSL-сигналов. Современные реализации этого алгоритма обеспечивают достаточно высокие показатели спектральной эффективности. Как уже было отмечено выше, ограниченность спектра и относительно высокий уровень помехоустойчивости QAM-модулированного сигнала обеспечивают возможность построения на основе этой технологии высокоскоростных ADSL и VDSL-систем передачи данных по двухпроводной линии с частотным разделением принимаемого и передаваемого информационных потоков.

Недостатки алгоритма.

К недостаткам алгоритма можно отнести относительно невысокий уровень полезного сигнала в спектре модулированного колебания. Этот недостаток является общим для алгоритмов гармонической амплитудной модуляции и выражается в том, что максимальную амплитуду в спектре модулированного колебания имеет гармоника с частотой несущего колебания. Поэтому данный алгоритм в чистом виде достаточно редко используется на практике. Гораздо более широкое распространение получают алгоритмы, которые используют основные принципы QAM и в то же время свободны от его недостатков (например - алгоритм CAP).

Треллис-кодирование. [4]

Треллис-кодирование.

Рассмотрим принципы треллис-кодирования на основе простейшего кодера, состоящего из двух запоминающих ячеек и элементов XOR (рис. 11).

Рисунок 11

Пусть на вход такого кодера поступает со скоростью k бит/с последовательность бит 0101110010. Если на выходе кодера установить считывающую ячейку, работающую с вдвое большей частотой, чем скорость поступления бит на вход кодера, то скорость выходного потока будет в два раза выше скорости входного потока. При этом считывающая ячейка за первую половину такта работы кодера считывает данные сначала с логического элемента XOR 2, а вторую половину такта — с логического элемента XOR 3. В результате каждому входному биту ставится в соответствие два выходных бита, то есть дибит, первый бит которого формируется элементом XOR 2, а второй — элементом XOR 3. По временной диаграмме состояния кодера нетрудно проследить, что при входной последовательности бит 0101110010 выходная последовательность будет 00 11 10 00 01 10 01 11 11 10.

Отметим одну важную особенность принципа формирования дибитов. Значение каждого формируемого дибита зависит не только от входящего информационного бита, но и от двух предыдущих бит, значения которых хранятся в двух запоминающих ячейках. Действительно, если принято, что Ai — входящий бит, то значение элемента XOR 2 определится выражением , а значение элемента XOR 3 — выражением . Таким образом, дибит формируется из пары битов, значение первого из которых равно , а второго – . Следовательно, значение дибита зависит от трех состояний: значения входного бита, значения первой запоминающей ячейки и значения второй запоминающей ячейки. Такие кодеры получили название сверточных кодеров на три состояния (K = 3) с выходной скоростью ½.

Работу кодера удобно рассматривать на основе не временных диаграмм, а так называемой диаграммы состояния. Состояние кодера будем указывать с помощью двух значений — значения первой и второй запоминающих ячеек. К примеру, если первая ячейка хранит значение 1 (Q1=1), а вторая — 0 (Q2=0), то состояние кодера описывается значением 10. Всего возможно четыре различных состояния кодера: 00, 01, 10 и 11.

Пусть в некоторый момент времени состояние кодера равно 00. Нас интересует, каким станет состояние кодера в следующий момент времени и какой дибит будет при этом сформирован. Возможны два исхода в зависимости от того, какой бит поступит на вход кодера. Если на вход кодера поступит 0, то следующее состояние кодера также будет 00, если же поступит 1, то следующее состояние (то есть после сдвига) будет 10. Значение формируемых при этом дибитов рассчитывается по формулам и . Если на вход кодера поступает 0, то будет сформирован дибит 00 (), если же на вход поступает 1, то формируется дибит 11 (). Приведенные рассуждения удобно представить наглядно с помощью диаграммы состояний (рис. 12), где в кружках обозначаются состояния кодера, а входящий бит и формируемый дибит пишутся через косую черту. Например, если входящий бит 1, а формируемый дибит 11, то записываем: 1/11.

Рисунок 12

Продолжая аналогичные рассуждения для всех остальных возможных состояний кодера, легко построить полную диаграмму состояний, на основе которой легко вычисляется значение формируемого кодером дибита.

Используя диаграмму состояний кодера, несложно построить временную диаграмму переходов для уже рассмотренной нами входной последовательности бит 0101110010. Для этого строится таблица, в столбцах которой отмечаются возможные состояния кодера, а в строках — моменты времени. Возможные переходы между различными состояниями кодера отображаются стрелками (на основе полной диаграммы состояний кодера — рис. 13), над которыми обозначаются входной бит, соответствующий данному переходу, и соответствующий дибит. Например, для двух первых моментов времени диаграмма состояния кодера выглядит так, как показано на рис. 14. Красной стрелкой отображен переход, соответствующий рассматриваемой последовательности бит.

Рисунок 13 Рисунок 14

Продолжая отображать возможные и реальные переходы между различными состояниями кодера, соответствующие различным моментам времени (рис. 14, 15, 16), получим полную временную диаграмму состояний кодера (рис. 17).

Рисунок 15

К-во Просмотров: 387
Бесплатно скачать Реферат: Квадратурная амплитудная модуляция