Реферат: Лабораторные исследования промышленных катализаторов 2
За счет высокой линейной скорости реакционной смеси и малой степени превращения достигаются минимальные перепады концентраций и температур. Аппарат может быть рассмотрен как аппарат идеального смешения.
Основные достоинства данного метода:
1. Прямое измерение скорости реакции
2. Постоянство температуры в реакторе благодаря интенсивной циркуляции и малому изменению степени превращения в слое катализатора
3. Режим идеального смешения, т.е. отсутствие внешнедиффузионных торможений
4. Возможность работы с любым количеством катализатора, вплоть до одной гранулы, при любых размерах гранул и соотношениях размеров гранул и реактора
При этом внутридиффузионное торможение сохраняется. А его снятие требует уменьшения размера гранул катализатора. Сохраняя состав катализатора, но варьируя размер его гранул, можно выявить влияние пористой структуры на активность контактной массы, а также их максимальный размер, соответствующий переходу от внутридиффузионной области к кинетической.
К недостаткам метода относятся:
1. Сложность аппаратурного оформления
2. Необходимость достаточного количества исходных веществ и времени для достижения стационарного состояния
В этом методе для расчета скорости реакции используют значительную разность концентраций смеси, поступающий в циркуляционный контур и выходящей из него. Поэтому каталитическая активность данным методом может быть измерена с гораздо большей точностью.
1.3. Метод изучения кинетики реакций во взвешенном слое катализатора
Метод имеет важное значение при моделировании производственных условий некоторых процессов. Но ведение реакций во взвешенном слое требует тщательного выбора гидродинамических условий, соответствующих моделируемому процессу. Важно аналогичное моделируемому процессу отношение действительной скорости ω и скорости начала взвешивания ωв катализатора.
Скорость начала взвешивания можно определить по уравнению:
(3)
где Reв – критерий Рейнольдса, Ar – критерий Архимеда.
Уравнение (3) применимо для моно- и полидисперсных слоев с частицами сферической и неправильной формы в широком диапазоне чисел Re и позволяет определять скорость начала взвешивания катализатора ωв с точностью до ± 30 %.
Установка для окисления сернистого ангидрида во взвешенном слое катализатора аналогична установке, изображенной на рис. 1, но газовую смесь заданного состава подают в контактный аппарат снизу вверх со скоростью, превышающей истинную скорость начала взвешивания ωв.и. :
(4)
1.4. Импульсные методы исследования активности катализаторов
Данные методы предусматривают использование хроматографического адсорбента в качестве катализатора с периодической подачей на него реагирующих веществ. В колонке происходит разделение продуктов и непрореагировавших компонентов реакционной смеси.
В импульсном каталитическом микрореакторе через систему с постоянной скоростью пропускают газ-носитель (инертный газ или один из реагентов). В газ-носитель до реактора вводят реагент. Из реактора газ-носитель поступает в термостатированную колонку газового хроматографа и затем в детектор. Метод позволяет за короткий срок оценить относительную активность и селективность большого числа катализаторов при различных температурах.
Импульсные методы не пригодны для определения каталитической активности в стационарных условиях. Но с их помощью можно получить кинетические данные для нестационарных процессов, при которых каталитическая поверхность еще не равновесна. Изучая импульсы, следующие друг за другом при постоянной температуре, можно проследить изменение катализатора еще до наступления стационарного состояния.
2. Исследование структуры
К числу важнейших характеристик контактных масс относится их пористая структура (размер поверхности, суммарный объем пор и их распределение по радиусам).
2.1. Адсорбция как способ определения поверхности
Измерить поверхность катализатора можно путем исследования физической адсорбции газов при температурах, близких к их точкам кипения. При этом количество адсорбированного газа зависит только от равновесных давления и температуры. Если температура газа ниже его критической, т.е. газ является паром, то более удобна форма зависимости адсорбированного при равновесии газа Qг при фиксированной температуре газа и твердого тела, которая выражается уравнением:
(5)
где Ро – давление насыщенного пара адсорбата.
Эта функция (5) выражает изотерму адсорбции, связывающую количество адсорбированного газа с его давлением. Данную зависимость впервые вывел Ленгмюр. При этом предполагается, что адсорбция ограничена образованием монослоя, т.е. адсорбироваться могут только те молекулы, которые ударяются о чистую поверхность. Уравнение Ленгмюра имеет вид:
(6)
где Sа.м. – доля поверхности, покрытая адсорбированными молекулами, α0 – «коэффициент конденсации» - отношение числа неупругих столкновений ко всем, n – число десорбируемых за единицу времени молекул, m – число молекул, удаляющихся о площадь поверхности, равную единице.
Уравнению Ленгмюра подчиняется всего пять типов изотерм физической адсорбции паров, рис. 3.
Рис. 3. Типы изотерм физической адсорбции паров
Изотерма I соответствует мономолекулярной изотерме Ленгмюра, II и III - мономолекулярной и полимолекулярным адсорбциям. IV и V сходны с изотермами II и III, но максимум адсорбции почти достигается при давлениях меньше P0 . Они отвечают случаям, когда мономолекулярная и полимолекулярная адсорбции сопровождаются капиллярной конденсацией. Большинство паров имеют форму изотермы адсорбции типа II, по которой, используя теорию БЭТ, можно определять удельную поверхность адсорбирующего твердого тела.
2.2. Методы определения поверхности по изотермам адсорбции
Эти методы делятся на три основные группы: объемные, весовые и методы, основанные на изменении теплопроводности (динамические).
В объемном методе при заданном давлении измеряется изменение объема газа, которое и служит мерой количества адсорбированного вещества.
В весовом методе определяется привес твердой фазы (адсорбент-адсорбат), обусловленный адсорбцией газа.