Реферат: Лабораторные исследования промышленных катализаторов 2

Наиболее распространены объемные методы определения поверхности. Схема одной из установок данного метода приведена на рис. 4.

Рис. 4. Адсорбционная установка для определения площади поверхности объемным методом:

1 – кран для подачи азота, 2 – кюветы, 3 – ампула, 4 – масляный манометр, 5 – ртутный манометр, 6 – колба для хранения газа, 7 – кран, 8 – калиброванная колба, 9 – лампа термопары

Обязательным условием работы данного метода является термостатирование измерительной бюретки (до ±0,050 ). Для создания разряжения используют форвакуумный насос. С помощью откалиброванной колбы 8 производят все необходимые измерения объемов системы. Ртутный манометр 5 предназначен для измерения давления в системе, а масляный 4 – для определения изменения давления при адсорбции.

Для определения удельной поверхности, берут навеску исследуемого катализатора, чтобы ее суммарная поверхность была 5-100 м2 . Все кюветы заполняют навесками и ставят в рабочее положение (соединяют их с вакуумной линией и создают необходимый вакуум при обогреве до 200-250 0 С). Затем отключают насос и обогрев. После остывания кюветы соединяют с измерительной системой. Далее из колбы с азотом подают газ с таким расчетом, чтобы его давление в системе стало 16 кПа, отключают от системы все кюветы, кроме одной, замеряют показания манометра и кювету погружают в сосуд Дьюара с жидким азотом. После того как положение уровня жидкости в манометре установится, снова замеряют давление.

Удельную площадь поверхности катализатора рассчитывают по формуле:

, (7)

где А – постоянная для данного объема системы, ∆Р – изменение давления после погружения кюветы в жидкий азот (после адсорбции), Р – давление азота в системе, акат – навеска катализатора, г, n=υ/υм , υ – объем контакта, υм – вместимость монослоя, г адсорбента на 1 г твердого тела, i=∆Р/Р – коэффициент охлаждения.

2.3. Хроматографический метод определения поверхности

Имеет ряд плюсов по сравнению со статистическими методами:

- не требует вакуумной аппаратуры,

- проще в монтаже,

- меньший расход времени,

- более чувствительны (можно определять поверхность в 0,01 м2 /г).

Сущность метода заключается в том, что из смеси адсорбата с газом-носителем производят поглощение адсорбата при охлаждении образца адсорбента до температуры жидкого азота. Это приводит к уменьшению концентрации адсорбата в смеси, проходящей через ячейку катарометра, и фиксированием на диаграмме адсорбционного пика. При комнатной температуре его концентрация возрастает и это дает на диаграмме десорбционный пик, направленный в противоположную сторону. Площадь пика пропорциональна количеству адсорбированного адсорбата.

При выборе адсорбата руководствуются тем, чтобы площадь его молекулы в монослое была постоянной. И при температуре опята химическая адсорбция отсутствовала. Лучше всего этим требованиям отвечают инертные газы и азот.

При выборе газа-носителя необходимо, чтобы его адсорбция при температуре опыта была настолько мала, чтобы ей можно было пренебречь. Кроме того, коэффициенты теплопроводности газа-носителя и адсорбата должны сильно различаться между собой для обеспечения высокой чувствительности катарометра.

Образование мономолекулярного слоя адсорбата на катализаторе достигается выбором определенных соотношений газов в исходной смеси. Так при работе с азотом его относительное парциальное давление должно быть в пределах 0,1-0,3, чтобы образовывался именно мономолекулярный слой.

После проведения эксперимента значение удельной поверхности рассчитывают с учетом того, что площадь одной молекулы, например азота, в плотном монослое составляет 1,62 нм2 :

, (8)

где Sп – площадь пика, см2 , f – масштабный коэффициент, Z – калибровочный коэффициент, см3 /см2 , акат – навеска катализатора, г.

Погрешность расчета по данной формуле не превышает ±5 %.

2.4. Адсорбционный метод определения радиуса пор

Для полной оценки структурных характеристик контактных масс необходимо знать объем пор или средний радиус и распределение объема пор по размерам. Зная эти данные, можно определить наличие или отсутствие и степень внутридиффузионных осложнений, а также степень использования внутренней поверхности катализатора. Адсорбционный метод основан на том, что капиллярная конденсация в узких порах происходит при давления, меньших, чем давление насыщенного пара адсорбата. Снижение давления паров над цилиндрическим столбом жидкости, находящейся в поре (капилляре) с радиусом r, выражается уравнением Кельвина:

, (9)

где υ – мольный объем жидкости, rК – радиус цилиндра, соответствующий заданному значению Р/Р0 (средний радиус Кельвина).

В опыте необходимо провести адсорбцию до относительного давления, равного единице, и десорбцию, а затем использовать для расчета десорбционную ветвь петли гистерезиса данной изотермы. Для примера, на рис. 5 дана изотерма адсорбции и десорбции паров бензола на крупнопористом силикагеле.

Рис. 5. Изотермы адсорбции и десорбции паров бензола на крупнопористом силикагеле при 20 0 С

Каждая точка изотермы дает значение адсорбированного количества бензола а и относительного давления пара Р/Р0 . Умножая а на мольный объем жидкости υ , находят объем пор, а подставляя в уравнение (9) относительное давление пара получают rК .

Так как капиллярная конденсация обычно сопровождается полимолекулярной адсорбцией в порах твердого вещества, значение rК отличается от r на толщину адсорбированного полимолекулярного слоя (для модели сорбента с цилиндрическими или коническими порами):

(10)

где а – адсорбция при данном относительном давлении Р/Р0 , ммоль/г; Sуд – удельная поверхность сорбента (8), см2 /г; υ – объем 1 ммоль ожиженного пара при температуре опыта, см3 .

Значение δ соответствует началу гистерезиса. На каждом этапе десорбции сорбента наблюдается следующая зависимость:

(11)

где ∆υ – изменение сорбции, выраженной в объеме ожиженного пара при температуре опыты; ∆υ* - приращение объема опорожненных пор.

Отношение ∆υ*/∆r выражает распределение объема пор по радиусам для твердого пористого тела. Но при определении функции распределения объема пор необходима большая точность изотермы адсорбции в обоих направлениях. Поэтому измерение проводят весовым методом с применением пружинных весов Мак-Бена, рис. 6 [2].

Рис. 6 - Схема вакуумной сорбционной установки Мак Бена:

1 - сорбционная колонна, 2 - кварцевая спираль, 3 - образец, 4 - манометр, 5 - термостатируемый источник паров, 6 - ловушки, 7 - катетометр, 8 - манометрические лампы, 9 - воздушный термостат. I - к ультратермостату, II - к высокому вакууму, III - воздух.

Несмотря на допущения в расчетах распределения пор по размерам с помощью уравнения Кельвина (9), получаемые данные представляют значительный интерес и позволяют оценить макроструктуру пористых катализаторов и адсорбентов.

2.5. Ртутная порометрия

Метод основан на свойствах ртути не смачивать многие твердые тела. Связь между внешним давлением Р и капиллярным сопротивлением в порах твердого тела определяется уравнением капиллярного давления:

(12)

или

(13)

где S – площадь поперечного сечения поры; h – высота капиллярного падения жидкости; П – периметр поры; Θс – угол смачивания между твердым веществом и жидкостью 1400 для ртути; σ=480∙10-2 Н/м (для ртути) – поверхностное натяжение.

К-во Просмотров: 263
Бесплатно скачать Реферат: Лабораторные исследования промышленных катализаторов 2