Реферат: Лазерная система для измерения статистических характеристик пространственных квазипериодических структур

· устранение влияния уровня подготовки метрологов на надежность процесса крнтроля:

· повышение достоверности измерения размеров a и b путем их измерения в нескольких сечениях на высоте h зубьев ЛЗ;

· снижение уставаемости зрения оператора-метролога ОТК.

1.3. Измерительный автомат “Bugs” для контроля

периодичности спиралей ламп бегущей волны

В 70-х годах фирмой “Bugs” (США) был разработан измерительный автомат для контроля периода навивки спиралей ламп бегущей волны (ЛБВ). Использование этого автомата позволило сократить время контроля периодичности навивки спиралей ЛБВ с двух человеко-дней до десяти минут.

В основу работы автомата положен теневой оптический метод последовательного сканирования всех элементов изделия и сравнения их с эталоном. Для достижения высокой точности измерений перемещение контролируемого изделия в поле зрения оптической системы осуществ-ляется гидравлическими приводами.

Точность измерений прибора не зависит от скорости перемещения спирали. Однако вибрации контролируемого изделия, а также деталей всего прибора недопустимо и устраняется применением системы сложных гидравлических приборов. Кроме того, необходима также высокая точность фокусировки оптической системы, нарушение которой приводит к размытию изображения. Так как существует ряд деталей которые перемещаются друг относительно друга, то необходима механическая прецизионная система, что усложняет конструкцию прибора и повышает соответсвенно его стоимость.

В последующие годы конструкция аппарата была модернизирована и улучшены его метрологические характеристики. Но следует отметить, что производительность этого аппарата не может быть существенно увеличена из-за использования в нем теневых оптических методов измерений, возможности которых в данном случае уже исчерпаны, поскольку необходим последовательный просмотр всех элементов пространственной структуры. К недостаткам прибора следует отнести необходимость использоваия системы сложных гидравлических приводов для виброзащиты спирали.

Указанные недостатки частично устранены в фотоэлектрических измерительных микроскопах, которые также могут быть использованы для контроля геометрических размеров элементов ЛЗ.

1.4. Фотоэлектрические сканирующие микроскопы

В работе [24] описана опытно-конструкторская разработка фотоэлект-рического микроскопа ФЭМ-2, предназначенного для геометрического контроля размеров малых объектов. В основу работы микроскопа положено формирование оптической системой увеличенного солинейного изображения измеряемого объекта. В плоскости изображения расположен фотоприемник, выходной сигнал которого поступает на электро-измерительную аппаратуру. К недостаткам этого прибора следует отнести отсутствие коррекции дрейфа “нуля”, малый предел фото-электрических измерений ( до 10 мкм ), ручное управление процессом измерений и окулярный отсчет показаний прибора, что не позволило использовать его в промышленных условиях для геометрического контроля ЛЗ.

Указанные недостатки частично устранены в фотоэлектрическом микроскопе ФЭМ-1Ц [25], который предназначен для измерений линейных размеров малых объектов величиной £ 100 мкм. При этом дискретность отсчетов составляет 0.5 мкм, а максимальная погрешность измерений не более ± 0.3 мкм. Этот микроскоп в бывшем СССР серийно выпускался с 1980 года. В качестве выходного индикатора в нем используется цифровая отсчетная система. Одним из основных недостатков микроскопа ФЭМ-1Ц является малое быстродействие - время автомати-ческого наведения на штрих до 20 с, зависимость погрешности измерений от качества фокусировки оптической системы, что требует практически непрерывного визуального контроля качества изображения в окуляр при измерении длиномерных объектов. Электронная система микроскопа не позволяет выполнять статистическую обработку резудьтатов измерений. В силу указанных недостатков они не нашли применеия для геометрического контроля структуры ЛЗ.

1.5. Лазерные дифракционные измерители

линейных размеров малых объектов

Предположения о возможности использования явления дифракции световых волн для контроля размеров малых объектов были впервые высказаны Роулэндом в 1888 году [13, 14, 15]. Позже он использовал это для качественного контроля изготовления периодической структуры дифракционных решеток. Сущность метода заключалась в том, что, если дифракционную решетку осветить монохроматической световой волной, то на некотором растоянии от нее формируются эквидистантно располо-женные дифракционные максимумы светового потока. При наличии дефек-тов решетки, вокруг этих основных максимумов возникают и добавочные максимумы, которые получили название “духов”. Однако теоретическое обоснование этого явления в то время так и не было сформулировано, что и не позволило определить аналитические зависимости, описывающие функциональную взаимосвязь распределения светового потока в “духах” с дефектами решетки.

Большой вклад в развитие теории дифракционных решеток внес В. Рон-ки, который занимался развитием и совершенствованием их производства более пятидесяти лет, начиная с 1921 года [13, 26]. Он дал простейшую теорию дифракционных решеток, описал их основные свойства и возмож-ность применения для контроля характеристик фотографических объек-тивов.

Г.Харисон [27] в 1949 году предложил способ контроля дифракционных решеток с помощью интерферометра Майкельсона и положил, таким образом, начало разработке схемы интерферометра с дифракционной решеткой для контроля качества самих решеток.

Дифракционные методы контроля качества изготовления периодических структур являются наиболее переспективными. Они положены в основу многочисленных лазерных дифракционных измерителей линейных размеров малых объектов.

Для контроля диаметра тонких отверстий в [28] предложено освещать контролируемые отверстия монохроматической световой волной и измерять амплитуду четных и нечетных максимумов дифракционной картины отверс-тия. Для расширения диапазона диаметра измеряемых отверстий, необхо-димо изменять длину волны излучения до тех пор, пока амплитуда интерференционного сигнала нечетных гармоник достигнет удвоенного значения амплитуды световой волны в свободном пространстве. Диаметр измеряемого отверстия определяют по формуле : , где - растояние между измеряемым отверстием и точкой измерения светового поля в дифракционной картине. Недостатком метода является необхо-димость применения лазера с перестраиваемой длиной волны генерации.

Известны также устройства [29, 30] для допускового контроля геометрических размеров изделий путем соответствующей обработки их дифракционного изображения сложной фотоэлектрической измерительной системой, либо оптической системой пространственной фильтрации. Однако эти устройства являются узко специализированными и требуют предварительного синтеза сложных голографических пространственных фильтров, что позволяет их использовать лишь для качественного допус-кового контроля изделий.

Таким образом лазерные дифрактометры являются наиболее переспек-тивным научным направлением развития автоматизированного метро-логического оборудования. Оно может быть также успешно использовано и для разработки средств автоматизации контроля статистических характе-ристик квазипериодической структуры ЛЗ. Это, в свою очередь, может быть выполнено лишь с созданием специализированных оптических систем обработки изображений (ОСОИ) на базе когерентных оптических спектро-анализаторов (КОС) пространственных сигналов, положенных в основу практически всех известных лазерных дифрактометров.

2. Обзор схем построения лазерных

дифрактометров

Интенсивное развитие этих систем началось в начале 80-х годов. Построение голографических и дифракционных оптических систем для метрологии основано на получении изображений Френеля, либо Фурье исследуемого объекта с последующим анализом их параметров фото-электической измерительной системой.

Основным преимуществом таких метрологических систем, перед ви-зуальными оптическими измерительными приборами, является высокая производительность, что позволяет автоматизировать ряд метрологических процессов в промышленности. Где требуется интегральная комплексная оценка качества изделия.

Для формирования изображений Фурье или Френеля исследуемого объекта используют когерентный оптический спектроанализатор прост-ранственных сигналов, схему построения и геометрические параметры которого выбирают в зависимости от характера решаемой задачи.

В настоящее время уже стала классической схема когерентного оптического спектроанализатора (КОС), приведенная на рис.1.

К-во Просмотров: 552
Бесплатно скачать Реферат: Лазерная система для измерения статистических характеристик пространственных квазипериодических структур