Реферат: Лазерная система для измерения статистических характеристик пространственных квазипериодических структур
Рис.2. Схема КОС со входным транспарантом перед фурье-объективом
Рис.3. Схема КОС со входным транспарантом за фурье-объективом
3.Математическая модель квазипериодической
структуры СВЧ линий замедления
При статистических исследованиях геометрических размеров элементов пространственной структуры ЛЗ установлено, что из-за различных техноло-гических погрешностей, эти размеры являются величинами случайными с нормальным законом распределения. Таким образом, пространственная структура ЛЗ не является строго переодической, а поэтому ее энер-гетический спектр будет отличаться от энергетического спектра периоди-ческих структур.
Из скалярной теории [7, 8] известно, что оптической системой КОС в плоскости спектрального анализа формируется дифракционное изображе-ние пространственного объекта, помещенного во входной плоскости. Математические зависимости, описывающие форму дифракционного изоб-ражения, могут быть определены лишь путем решения задачи о дифракции когерентной световой волны на пространственной структуре объекта. Одна-ко для пространственной структуры ЛЗ с флуктуациями периодичности, решение такой задачи чисто оптическими методами не может быть полу-чено из-за значительной математической сложности ее. Кроме, того эти методы применимы лишь для решения дифракционных задач на регу-лярных детерминированных пространственных структурах и неприменимы для случайных пространственных сигналов.
Поэтому в настоящее время такие задачи для случайных оптических сигналов решают в оптике с применением методов статистической радио-физики в силу единства физических процессов и математических методов анализа прохождения электрических сигналов в электрических цепях и распостранения пространственных сигналов в оптических системах. Это позволяет определить распределение освещенности в дифракционном изображении квазипериодической пространственной структуры ЛЗ (т.е. ее энергетический спектр) путем вычисления усредненного квадрата преобра-зования Фурье над ее амплитудным коэфициентом пропускания.
Пространственная штриховая структура ЛЗ является квазипериодичес-ким сигналом, в технике ОСОИ, и состоит из взаимонезависимых прозрач-ных щелей и непрозрачных стенок. К тому же период пространственной структуры ЛЗ также является случайной величиной, так как он равен сумме двух взаимонезависимых величин. Таким образом, пространственная струк-тура ЛЗ относится к классу случайных квазипериодических сигналов.
Поскольку освещенность пространственной структуры ЛЗ, помещенной во входной плоскости КОС, равномерна по полю, то ее амплитудный коэфициент попускания может быть описан единично-нулевой функ-
цией. Поэтому, в пределах ширины прозрачных щелей функция
, а в пределах ширины
непрозрачных стенок, соответственно, 0. Кроме того, ширина щелей
и стенок
являются величинами взаимонезави-симыми, поскольку при изгибах стенок толщина
их не изменяется, а изменяется лишь ширина
щелей. Взаимонезависимость этих величин также возникает и потому, что зубья в верхней и нижней гребенках наре-заются раздельно на разных заготовках, после спаивания которых обра-зуются между зубьями щели, а ширина их уже не зависит от толщины зубьев, что подтверждается также малостью коэфициента корреляции
для размеров
и
.
Фрагмент квазипериодической пространственной структуры ЛЗ и соот-ветствующая ему функция пропускания в сечении у=0 показаны на рис.4 (а и б), где Рх - период пространственной структуры, равный
.
Поскольку ширина щелей и
стенок являются величинами случайны-ми и взаимонезависимыми, то и период
пространственной структуры ЛЗ будет также величиной случайной. Период
является суммой двух случай-ных величин с нормальными законами распределения, следовательно, закон распределения
также будет нормальным.
Таким образом, амплитудный коэфициент пропускания прост-ранственной квазипериодической структуры ЛЗ может быть описан функ-цией вида
(2.4), где
- порядковый номер щели,
- пространственная координата положения начала щели,
- высота перекрытия зубьев в квазипериодической структуре ЛЗ.
Из выражения (2.4) видно, что переменные х и у функции взаимо-независимы, а поэтому эта функция является функцией с разделяемыми переменными, и может быть представлена в виде произведения функций
и
, т.е.
(2.5).
В выражении (2.5) функция является финитной в пределах высо-ты
перекрытия зубьев верхней и нижней гребенок пространственной структуры ЛЗ вдоль координаты х, как показано на рис.4б.
Для оптической системы КОС пространственная структура ЛЗ является квазипериодическим сигналом. В свою очередь, основными характеристи-ками такого сигнала, т.е. пространственной структуры ЛЗ, являются:
· средние размеры и
ширины стенок и щелей, а также средние квадратические отклонения СКО
и
от них соответственно;
· законы распределения и
размеров стенок и щелей;
· спектральная и корреляционная функции.
Для описания спектральных и корреляционных функций случайных сигналов часто используются характеристические функции. Характеристи-ческая функция случайной величины
является фурье-образом ее закона распределения
, т.е.
, где
- простран-ственная частота, измеряемая в [мм-1 ], поскольку в рассматриваемом случае координата
является пространственной и имеет размерность [мм].
Тогда с учетом получим:
, а вводя замену переменных вида
. Этот интеграл в новых пределах интегрирования от
до
можно представить через элементарные функции следующим выражением
(2.6) , и аналогично
(2.7).
Полученные выражения (2.6) и (2.7) являются характеристическими функциями квазипериодической пространственной структуры ЛЗ с нормаль-ным законом распределения ширины стенок и
щелей.
Как в оптических, так и в электронных устройствах спектрального анали-за сигналов, существует возможность получения как амплитудного, так и энергетического их спектров. Однако в теории спектрального анализа пространственных сигналов известно, что при использовании квадратичес-ких фотодетекторов для регистрации параметров дифракционного изобра-жения, формируемого оптической системой КОС, автоматически на ее вы-ходе формируется энергетический спектр исследуемого сигнала. Парамет-ры такого спектра могут быть измерены соответствующими контрольно-измерительными приборами, а форма его определена с применением мето-дов статистической радиооптики путем интегрального преобразования Винера-Хинчина, либо на основе теоремы Хилли.