Реферат: Лекции по теории проектирования баз данных (БД)

return(NEWDEP)

end

Пример работы алгоритма MEMBER

Пусть F = {НОМЕР_РЕЙСА ДАТА_ВЫЛЕТА -> КОЛИЧЕСТВО_МЕСТ,

НОМЕР_РЕЙСА -> ПУНКТ_ОТПРАВЛЕНИЯ, НОМЕР_РЕЙСА ДАТА_ВЫЛЕТА -> ПИЛОТ} и необходимо установить F |= НОМЕР_РЕЙСА -> ПИЛОТ

Используем для этого алгоритм MEMBER

Покрытия функциональных зависимостей

Для формирования БД, как системы взаимосвязанных отношений на основании известных (из семантических соображений) F-зависимостей необходимо иметь способ минимизации первоначального множества F-зависимостей. Это необходимо для минимизации дублирования данных, обеспечения их согласованности и целостности. Теоретической основой для построения такого способа является теория покрытий функциональных зависимостей.

Определение.

Два множества F-зависимостей F и G над отношением R эквивалентны, , если F+ = G+ . Если , то F есть покрытие для G. Предполагается, что имеет смысл рассматривать в качестве покрытий такие множества F, которые не превосходят множество G по числу F-зависимостей.

Из этого определения следует, что для установления факта, что множество функциональных зависимостей F является покрытием G , необходимо определить эквивалентность F и G. Практически это достигается путем использования следующего алгоритма:

Алгоритм EQUIV

Вход: два множества F- зависимостей F и G.

Выход: истина, если ; ложь в противном случае.

EQUIV(F,G)

begin

v=DERIVES(F,G) and DERIVES(G,F);

return(v)

end

Здесь DERIVES алгоритм проверяет условие F |= G и имеет вид:

Алгоритм DERIVES

Вход: два множества F- зависимостей F и G.

Выход: истина, если F |= G; ложь в противном случае.

DERIVES(F,G)

begin

v= истина

for каждая F-зависимость X -> Y из G do

v = v and MEMBER(F, X -> Y)

end

return(v)

end

Множество F-зависимостей F не избыточно, если у него нет такого собственного подмножества F’ , что F’F . Если такое множество F’ существует, то F избыточно. F является не избыточным покрытием G, если F есть покрытие G и F не избыточно.

К-во Просмотров: 564
Бесплатно скачать Реферат: Лекции по теории проектирования баз данных (БД)