Реферат: Лекции по теории проектирования баз данных (БД)
return(NEWDEP)
end
Пример работы алгоритма MEMBER
Пусть F = {НОМЕР_РЕЙСА ДАТА_ВЫЛЕТА -> КОЛИЧЕСТВО_МЕСТ,
НОМЕР_РЕЙСА -> ПУНКТ_ОТПРАВЛЕНИЯ, НОМЕР_РЕЙСА ДАТА_ВЫЛЕТА -> ПИЛОТ} и необходимо установить F |= НОМЕР_РЕЙСА -> ПИЛОТ
Используем для этого алгоритм MEMBER
Покрытия функциональных зависимостей
Для формирования БД, как системы взаимосвязанных отношений на основании известных (из семантических соображений) F-зависимостей необходимо иметь способ минимизации первоначального множества F-зависимостей. Это необходимо для минимизации дублирования данных, обеспечения их согласованности и целостности. Теоретической основой для построения такого способа является теория покрытий функциональных зависимостей.
Определение.
Два множества F-зависимостей F и G над отношением R эквивалентны, , если F+ = G+ . Если , то F есть покрытие для G. Предполагается, что имеет смысл рассматривать в качестве покрытий такие множества F, которые не превосходят множество G по числу F-зависимостей.
Из этого определения следует, что для установления факта, что множество функциональных зависимостей F является покрытием G , необходимо определить эквивалентность F и G. Практически это достигается путем использования следующего алгоритма:
Алгоритм EQUIV
Вход: два множества F- зависимостей F и G.
Выход: истина, если ; ложь в противном случае.
EQUIV(F,G)
begin
v=DERIVES(F,G) and DERIVES(G,F);
return(v)
end
Здесь DERIVES алгоритм проверяет условие F |= G и имеет вид:
Алгоритм DERIVES
Вход: два множества F- зависимостей F и G.
Выход: истина, если F |= G; ложь в противном случае.
DERIVES(F,G)
begin
v= истина
for каждая F-зависимость X -> Y из G do
v = v and MEMBER(F, X -> Y)
end
return(v)
end
Множество F-зависимостей F не избыточно, если у него нет такого собственного подмножества F’ , что F’F . Если такое множество F’ существует, то F избыточно. F является не избыточным покрытием G, если F есть покрытие G и F не избыточно.