Реферат: Линейные системы дифференциальных уравнений с периодическими коэффициентами

Итак, если

все мультипликаторы системы уравнений (**) отличны от единицы.Таким образом, выполнены все условия теоремы 2. Из этого следует, что система (*),а значит и исходное дифференциальное уравнение, имеет единственное периодическое решение с периодом ω.

Задача решена.

Пример 2: Показать, что линейное уравнение второго порядка

при a ≠2 πk / ω ( k Î R ) имеет единственное периодическое решение с периодом ω (см. пример 1); при a = ± 2 π / ω не имеет периодических решений с периодом ω, а приa =2 πk / ω (k — любое целое число, не равное ± 1 и 0 ) все его решения — периодические с периодом ω.

Решение.

Очевидно, что здесь необходимо воспользоваться теоремой 2 и замечанием к ней. Решение данного примера необходимо разбить на 3 части (для каждого из условий). Поскольку при нахождении матрицы монодромии в предыдущем примере мы свободный член исходного дифференциального уравнения не использовали и учитывая одинаковые правые части дифференциальных уравнений обоих примеров, можно будет сразу воспользоваться некоторыми выкладками примера 1.


????, ??????? ?????????? ????? ????????? ???:

1.[a ≠2 πk / ω ( k Î R ) ] Как мы установили в примере 1, любое линейное уравнение вида при указанных ограничениях действительно имеет единственное периодическое решение с периодом ω.

2-3.[a = ± 2 π / ω ; a =2 πk / ω (k — любое целое число, не равное ± 1 и 0 )]

При данных значениях а однородная система (**) из 1-го примера имеет нетривиальное периодическое решение с периодом ω, тогда в соответствии с замечанием к теореме 2 линейная неоднородная система уравнений, соответствующая заданному дифференциальному уравнению , может или вообще не иметь периодических решений с периодом ω (для случая 2 необходимо установить несовместность системы уравнений (13)), или иметь несколько периодических решений с периодом ω (для случая 3 необходимо установить, что система уравнений (13) имеет бесконечное множество решений).

Сначала мы будем случаи 2 и 3 рассматривать совместно:

Система уравнений (13):

Неоднородная система, соответствующая заданному дифференциальному уравнению:

Далее решать систему будем отдельно для каждого заданного значения а :
если в системе (***) справа будет получена нулевая матрица, то она имеет множество решений, если нет – не имеет их вообще.

2. Подставляем в систему (***)a = ± 2 π / ω :


3. Подставляем в систему (***)a =2 πk / ω (k — любое целое число, не равное ± 1 и 0 ):


Таким образом,система (13') имеет бесконечное множество решений для данных значений а Þ исходное дифференциальное уравнение имеет несколько линейно независимых периодических решений с периодом ω.

Замечание. Отдельно стоит рассмотреть случай, когда а=0 (этому случаю соответствует k =0 , если a =2 πk / ω).

Если а=0 , то матрицы, обратной фундаментальной матрице системы (**), не существует, отсюда сразу следует несовместность системы (13'), а значит исходное линейное уравнение второго порядка не имеет периодических решений.

Задача решена.


[1]

К-во Просмотров: 214
Бесплатно скачать Реферат: Линейные системы дифференциальных уравнений с периодическими коэффициентами