Реферат: Линейные системы уравнений
.
Скалярное произведение линейно, так как обладает основными свойствами линейных преобразований , и коммутативно.
Определение скалярного произведения позволяет переписать исходную систему уравнений в виде вектора с компонентами из скалярных произведений:
или
.
Вторая форма представления векторов в форме столбцов более наглядна в смысле зрительного установления покомпонентного равенства двух векторов: стоящего слева от знака равенства и справа. Эта форма, форма вектора-столбца принята за каноническую (основную).
Левый вектор-столбец в записи каждой строки содержит вектор неизвестных и естественно желание вынести его за прямые скобки. Оставшиеся коэффициенты упорядочены, как в матрице . Теперь для представления исходной системы уравнений в виде несложно определить векторно-матричную операцию , результатом которой является вектор с i- той компонентой, равной .
Аксиоматическое построение линейной (векторной) алгебры с рассмотренными базовыми операциями позволило установить важные и полезные свойства, как самих объектов алгебры, так и их алгебраических выражений.
2. Умножение векторов и матриц
Среди n- мерных векторов и векторных операций над ними важно выделить сумму n векторов, умноженных на числовые константы:
,
которая при произвольном выборе в частности может оказаться нулевым вектором (с нулевыми компонентами) или одним из суммируемых векторов . Если нулевой вектор при суммировании не нулевых векторов можно получить лишь в случае, когда все , то такие векторы в наборе называют линейно независимыми . Такими векторами в частности будут единичные векторы , у которых все компоненты нулевые, кроме единичной компоненты, расположенной на j- строке.
Линейно независимый набор единичных векторов с геометрической точки зрения можно рассматривать как n- мерную систему координат. Набор компонент любого вектора в этой n- мерной системе определяет координаты точки конца вектора, исходящего из начала координат, а также являются длинами проекций вектора на координатных осях.
Среди матриц размера и операций с ними в первую очередь необходимо отметить операцию умножения матрицы на матрицу. Необходимость введения операции умножения матриц возникает уже при первом взгляде на полученную векторную форму записи линейного уравнения . Векторы слева и справа имеют равные компоненты. Так как коэффициенты в строках матрицы в общем произвольны по величине, то соответствующие компоненты вектора x не обязаны быть равными компонентам вектора y . Последнее означает, что умножение вектора x на матрицу A вызвало изменение длины и направления вектора x . Если аналогичное преобразование выполняется над вектором правой части до решения уравнения, то вектор левой части должен быть преобразован так же:
.
Фактически мы имеем дело с заменой системы координат. Рассмотрим методику вычисления коэффициентов результирующей матрицы уравнения:
,
где – элемент матрицы С , равный скалярному произведению вектор-строки матрицы В на вектор-столбец матрицы А .
Произведение матриц в общем случае не коммутативно. Ассоциативный и распределительный законы в матричных выражениях выполняются.
3. Нормы векторов и матриц
Интерпретация упорядоченного набора чисел, как вектора в многомерном пространстве, позволяет говорить и о его длине. В прямоугольной системе координат по известным длинам проекций на координатные оси длину самого вектора вычисляют, как корень квадратный из суммы квадратов проекций:
,
где – компоненты вектора ,
– евклидова норма вектора, его длина.
В качестве нормы в литературе иногда используют квадрат длины вектора или другое выражение с компонентами вектора, лишь бы оно обладало свойствами расстояния: было положительным, линейным и удовлетворяло неравенству треугольника.
Деление вектора на величину его нормы называют нормированием , т.е. приведением вектора к единичной длине.