Реферат: Линейные системы уравнений
Знание собственных значений матрицы и ее проекторов позволяет выполнять вычисления аналитических функций получающихся, например, при решениях систем линейных дифференциальных уравнений, при исследованиях эквивалентных матричных преобразований и пр.
Для примера построим матрицу с заданными собственными значениями и собственными векторами, основанными на векторах .
Сначала необходимо убедиться в линейной независимости исходных векторов и добиться того, чтобы левые и правые одноименные собственные векторы оказались ортогональными, т.е. . Проверка линейной независимости может быть объединена с процессом ортогонализации заданной системы векторов методом Грама-Шмидта .
Для заданных векторов построим систему векторов таких, что , следующим образом:
Откуда последовательно находятся коэффициенты :
Взаимной ортогональности векторов v можно было бы добиваться и так, чтобы каждый был ортогонален каждому , положив и приравняв нулю скалярные произведения :
Определитель этой системы называют определителем Грама :
,
где - матрица, в общем случае комплексно сопряженная с матрицей
, составленной из заданных векторов.
Если грамиан положителен, а он всегда неотрицателен, то векторы линейно независимы, а если равен нулю, то зависимы. Это один из способов проверки конкретного набора векторов на их линейную независимость.
Для заданного выше набора векторов определитель произведения матрицы X на транспонированную X * будет равен
Таким образом, заданная система векторов линейно независима. Для построения ортонормированной системы векторов последовательно вычислим коэффициенты и ортогональные векторы:
После нормирования векторы образуют правую систему собственных векторов. Транспонированная Т -матрица с этими векторами есть -матрица (); ее строки являются собственными левосторонними векторами:
.
Внешнее (матричное) произведение каждого нормированного вектора самого на себя дает нам проекторы искомой матрицы:
Умножая каждое собственное значение из заданного набора на свой проектор и суммируя, получим:
.
Аналогично получается обратная матрица:
.