Реферат: Линейный гармонический осциллятор

(3.98)

Энергия искомого основного уровня равна . (3.99)

Последовательными сдвигами на вверх, согласно уравнению (3.92), получается вся лесенка энергетических уровней, и схема квантования энергии осциллятора передается формулой:

(3.100)

3.5.12. Оператор повышения позволяет получить весь спектр волновых функций из . Если υ раз подействовать оператором на , то получится с точностью до постоянного множителя. Иными словами, генератор волновой функции υ -го состояния – это оператор повышения, возведенный в степень υ :

. (3.101)

Напомним, что любое преобразование волновой функции, в общем случае, порождает необходимость новой нормировки.

3.5.13. Обсудим вид волновых функций осциллятора. Для этого удобно произвести еще одно упрощение за счет замены переменной путем подстановки:

, (3.102)

благодаря чему и оператор повышения , необходимый для полу-чения , примут вид:

, (3.103)

. (3.104)

Постоянный коэффициент в выражении (3.104) ие играет роли, так как к функции Ψ υ , генерируемой по формуле (3.105), он добавляет лишь множитель , который далее автоматически входит в состав нормировочного множителя А υ , и поэтому Ψ υ передается формулой:

(3.105)

Оператор представляет собой бином, составленный из степеней переменной s и оператора дифференцирования , который в свою очередь извлекает из гауссовой экспоненты степенные множители, в результате выражение (3.105) преобразуется к виду:

, (3.106)

где – многочлен степени υ, называемый полиномом Эрмита . Нетрудно убедиться, что эти полиномы можно представить выражением, которое легко запоминается, благодаря своей симметричности:

. (3.107)

Последовательно придавая υ значения 0, 1, 2, 3 …, читатель легко может вывести формулы полиномов Эрмита разных порядков. Для того, чтобы читатель смог проверить свои расчеты, приведем в табл.2 несколько первых полиномов Эрмита вместе с их корнями и графиками. В табл.2 также изображены графики ненормированных волновых функций

=.

У волновых функций имеется один и тот же множитель – экспонента ; эта быстро спадающая к нулю функция при удалении от начала координат “прижимает” к оси абсцисс расходящиеся было ветви полиномов. В результате получается картина, очень напоминающая поведение волновых функции “ящика”.

Табл.2.

Полиномы Эрмита и волновые функции гармонияеского

осциллятора

υ Корни полиномов Графики полиномов Графики волновых функций .
0 1 -
1 2s 0
2 4s 2 - 2 ±1/√2
3 8s 3 - 12 s 0; ±3/2
4 16s 4 -48s 2 +12 ±0,525; ±1,651

Читатель может сам получить формулу для нормировочных коэффициентов или взять их готовое выражение:

. (3.108)

3.5.14. Прямыми вычислениями нетрудно еще раз проверить свойство ортогональности волновых функций. Интегрирование по всей области возможных значений переменной х дает:

, (3.109)

что наглядно видно из графиков табл. 2

К-во Просмотров: 288
Бесплатно скачать Реферат: Линейный гармонический осциллятор