Реферат: Логические системы в различных функциональных наборах и их реализация
При этом каждый класс полностью определяется любым его представителем. Сопоставив результаты исследования с результатами пункта 3.2 получим следующие зависимости
М1 Ì K1 | М2 Ì K1 | М3 Ì K2 | М5 Ì K1 | М6 Ì K2 |
М1 Ì K3 | М2 Ì K2 | М5 Ì K2 | М6 Ì K3 | |
М5 Ì K3 |
или
K1 = M1 È M2 È M5
K2 = M2 È M3 È M5 È M6
K3 = M1 È M5 È M6
Результаты исследования занесены в таблицу 3. Результаты исследования на эквивалентность и толерантность необходимы для оптимизации построения логической схемы.
3.4. Матрица эквивалентности и толерантности.
Матрицу эквивалентности и толерантности можно представить в виде квадрата, по диагонали которого строятся классы эквивалентности, а затем устраиваются отношения толерантности. Матрица эквивалентности и толерантности представлена в таблице 4.
Матрица эквивалентности и толерантности. Таблица 4.
3.5. Диаграмма Эйлера.
Диаграмма Эйлера дает наглядное представление о том, как распределяются признаки по классам толерантности и эквивалентности. Диаграмма Эйлера для выбранных ФАЛ представлена на рисунке 3.5.
Диаграмма Эйлера. Рис. 3.5
3.6. Построение комбинационной схемы.
Комбинационная схема автомата распознавания набора признаков H = {h1 , h3 , h5 } построена на основе результатов исследований в пункте 3.1 и пункте 3.4.
Таблица 5
Используя таблицу 5, можно записать следующие отношения:
G1 = (XYZP) Ú (XYZP) Ú (XYZP) Ú (XYZP) Ú (XYZP) Ú (XYZP) Ú (XYZP) = (XYZP) Ú (XYZP) Ú (XYZP) Ú (XYZ) Ú (YZP)
G2 = (XYZP) Ú (XYZP)
G3 = (XYZP) Ú (XYZP) Ú (XYZP)
G4 = (XYZP) Ú (XYZP)
G5 = (XYZP)
G6 = (XYZP)
Тогда ФАЛ можно представить в виде:
F1 = G1 Ú G2 Ú G5
F3 = G2 Ú G3 Ú G5 Ú G6
F5 = G1 Ú G5 Ú G6
Эти отношения эквивалентны ФАЛ в СДНФ, полученным в пункте 2.5.
Комбинационная схема строилась в два этапа:
1 этап: - построение комбинационной схемы на элементах и, или,
(нестандартных).