Реферат: Логика умозаключения

Если ты хочешь наслаждаться искусством, то ты должен быть

художественно образованным человеком. Ты хочешь наслаждаться искусством.____________

Ты должен быть художественно образованным человеком.

Для построения другого примера воспользуемся интересным высказыванием великого русского педагога К. Д. Ушинского: «Если человек избавлен от физического труда и не приучен к умствен­ному, зверство овладевает им»'. Использовав это высказывание, построим условно-категорическое умозаключение:

Если человек избавлен от физического труда и не приучен к умственному,

то им овладевает зверство.

Это человек избавлен от физического труда и не приучен к умственному. Этим человеком овладевает зверство.

Любое использование правил в русском языке, математике, физике, химии и других школьных дисциплинах основано на утверждающем модусе, дающем достоверное заключение, поэтому в практике мышления он находит самое широкое применение.

Пример:

Если этот металл натрий, то он легче воды. Данный металл — натрий.__________

Данный металл легче воды.

II. Отрицающий модус {modus tollens).

Структура его:

Если а, то Ь. Не-Ь

Схема:

а -» Ь

Не-а

Ушчнский К. Д. Собр. соч. М. — Л„ 1948. Т. 2. С. 350.

Формула ((а -* Ь) л *) -» а (2) также является законом логики (это можно доказать с помощью таблицы).

Можно строить достоверные умозаключения от отрицания следствия к отрицанию основания.

Приведем два примера:

Если река выходит из берегов, то вода заливает прилежащие территории. Вода реки не залила прилежащие территории.________________

Вода не вышла из берегов.

Для построения второго условно-категорического умозаключе­ния воспользуемся следующим высказыванием: «...Тот мерзок, кто ярится, если чужой он доблести свидетель» (Данте Алигьери).

Умозаключение построено так:

Если человек при виде чужой доблести ярится, то он мерзок. Этот человек не является мерзким.________________

Этот человек при виде чужой доблести не ярится.

Условно-категорическое умозаключение может давать не толь­ко достоверное заключение, но и вероятное.

Первый вероятностный модус

К-во Просмотров: 1159
Бесплатно скачать Реферат: Логика умозаключения