Реферат: Логика умозаключения

Структура его:

Если а, то Ь.

__Ь.

Схема:

а -» Ь

Ъ,

Вероятно, а.

Вероятно, а.

Формула ((а - Ь) л Ь) -» а (3) не является законом логики. Она означает, что нельзя достоверно умозаключить от утверждения следствия к утверждению основания. Люди иногда неправильно умозаключают так:

Если бухта замерзла, то суда не могут входить в бухту. Суда не могут входить в бухту._______________

Бухта замерзла.

Заключение будет лишь вероятностным суждением, т. е. вероятно, что бухта замерзла, но возможно и то, что дует сильный ветер, или бухта заминирована, или существует другая причина, по которой суда не могут входить в бухту.

Вероятностное заключение получится и в таком умозаключении:

Если данное тело — графит, то оно электропроводно. Данное тело электропроводно.______________

Вероятно, данное тело — графит.

Второй вероятностный модус

Это второй модус, не дающий достоверного заключения.

Структура его:

Если а, то Ь. Не-а._____ Вероятно, не-Ь.

Схема:

а -» Ь ~а

Вероятно, Ъ

Формула ((а -» Ь) л a) -» b (4) не является законом логики. Она означает, что нельзя принимать заключение за достоверное, умозаключая от отрицания основания к отрицанию следствия.

Некоторые врачи ошибочно рассуждают так:

Если человек имеет повышенную температуру, то он болен. Данный человек не имеет повышенной температуры.____ Данный человек не болен.

Учащиеся в школе также допускают логические ошибки при построении умозаключений. Вот пример:

Если тело подвергнуть трению, то оно нагреется. Тело не подвергли трению. Тело не нагрелось.

Заключение здесь только вероятностное, но не достоверное, ибо тело могло нагреться по какой-либо другой причине (от солнца, в печи и т. д.).

Заметим, что приведение такого рода примеров вполне доста­точно для того, чтобы показать, что формы умозаключений, выражаемые формулами (3) и (4), неправильны. Но никакое количество примеров применения форм, соответствующих форму­лам (1) и (2), не в состоянии — если мы оперируем только примерами — обосновать их логической правильности. Для такого обоснования требуется уже некоторая логическая теория. Такая теория, фактически отсутствующая в традиционной логике, содер­жится в алгебре логики. Если формула, в которой конъюнкция посылок и предполагаемое заключение соединены знаком импликации', не является тождественно-истинной, т. е. не выражает закона логики, то в умозаключении заключение не является • достоверным. С помощью табличного метода можно доказать, что колонки таблицы 1, соответствующие формулам (1) modus ponens и (2) modus tollens выражают законы логики, а это означает, что modus ponens и modus tollens представляют собой логически правильные формы умозаключений.

К-во Просмотров: 1158
Бесплатно скачать Реферат: Логика умозаключения