Реферат: Магнитная обработка промышленных вод

Рис. 11. SEM фотографии: слева - чистый кальцит; в центре - моногидрокальцит в форме open-work сферулита; справа – аморфный Ca-Mg кремнеземный гидрогель, MWT отложения (см. текст).

5 Обсуждение

Результаты, полученные в крупномасштабном эксперименте и в промышленной практике показывают, что магнитная обработка воды работоспособна в промышленном масштабе. Мы не наблюдали зарастания поверхностей теплообменников, но лишь обнаруживали малое количество мягких, аморфных отложений. Спектры поглощения в инфракрасной области спектра позволили идентифицировать состав этих отложений, образованный гидрозолем кремнезема и этот факт - главный результат нашего изучения. Необходимо обратить внимание на характерную линию 1100 cm-1, принадлежащую гидрозолю кремнезема, которая наблюдается при Фурье-преобразовании инфракрасного спектра полученного осадка, после электромагнитной обработки воды [22].

Тот факт, что кремнезем был ответствен за наблюдаемый противонакипной эффект магнитной обработки естественной воды, имеет несомненную важность. Кремнезем наиболее распространенный естественный материал и может встречаться во множестве форм [23]. Промышленно произведенный активный кремнезем (техническая номенклатура) является коллоидным гидрозолем кремнезема, который является важным флокулянтом, используемым для поддержки процессов коагуляции. Активный кремнезем имеет короткий период работоспособности и должен предпочтительно использоваться в течение 2-3 дней [24]. Этот период удивительно совпадает с описываемой в литературе [2,10-13, 15] продолжительностью MWT эффекта. Популярный силикагель - сильное адсорбирующее вещество. Мы предполагаем, что MWT кристаллизации кальцита блокирована только из-за адсорбции кальция, магния или других металлических ионов «магнитно активизированным» кремнеземом. В ходе дальнейшего обсуждения мы постараемся объяснить, что предполагается под этим термином.

Как это было упомянуто во введении, естественная вода должна рассматриваться как разбавленный коллоидный раствор. Явления, встречающиеся в коллоидном водном растворе трудны для описания из-за их сложности и зависимости ряда физических и химических параметров. Как известно коллоидные системы характеризуются электростатическими зарядами их частиц, относительно растворителя. Электрический двойной слой поверхности раздела жидкость-твердое тело определяет электрокинетические свойства системы. Стабильность или коагуляция коллоида зависит от электростатического отталкивания против межмолекулярных сил притяжения. Внешнее электрическое поле или силы Лоренца в магнитном поле (как в случае MWT) будет влиять на поведение системы. Начиная с первого теоретического подхода Смолуховского [Smoluchowski] [25], кинетика коагуляции и электрохимии коллоидных растворов была предметом интенсивного исследования. Две статьи [16,26] основанные на общепризнанной теории DLVO (Derjaguin, Landau, Verwey, Overbeek) (Дерягин, Ландау, Вервей, Овербек) [27], обсуждают появление процессов, инициированных в естественной воде, прошедшей через магнитное устройство. В статье [26] действие статического магнитного поля на перемещающиеся растворы и суспензии Гамаянов [Gamayunov] рассматривает как действие силы Лоренца вызывающей изменение (деформацию) электрического двойного слоя. Эта деформация ведет к временному уменьшению барьера отталкивания и, следовательно, к увеличенной тенденции коагуляции дисперсных частиц. Концепция выше названного автора, объясняет эффект магнитного поля на коагуляцию и седиментацию (оседание) в суспензиях мела.

Недавняя статья Lipus и соавторов [16] представляет развитие модели поверхностной нейтрализации как одного из возможных механизмов управления величиной масштаба MWT. Нейтрализация может происходить из-за смещений ионов из основной части раствора к поверхности частицы. Ионное смещение обусловленное силой Лоренца сбалансировано силой вязкости. Согласно [16], Лоренц смещение иона описывается:

где e – заряд электрона, z - ионная валентность, h - вязкость воды, r - ионный радиус, B – индукция магнитного поля, t - время нахождения в MWT устройстве и n -скорость потока. Смещения, рассчитанные для Bn = 0,2 V/m и t = 0,1с, равны 3,4 нм и 5,3 нм для Ca2+ и Mg2+ соответственно, в то время как для HCO-3 лишь 0,9 нм. Ионные смещения станут существенными в близи твердых поверхностей, где они могут конденсироваться в адсорбционном слое Штерна, известном как диффузный слой.

Авторы утверждают, что смещающиеся противоионы останутся адсорбированными в слое Штерна в течение длительного времени (даже в течение дней) в зависимости от степени нейтрализации. (Это было фактически обосновано методом AFM в [12], когда экспозиция в магнитном поле уплотняла (расширяла?) адсорбционный слой; это явление объяснялось как обусловленное адсорбцией гидратированных ионов.) Окончательный вывод был сделан о том, что противонакипный эффект возможно вызван ускоренной коагуляцией накипь-образующих частиц в течение и после MWT.

Мы думаем, что модели, цитируемые выше дают хорошее основание для нашего заключения относительно критической роли которую играет кремнезем. Хотя две цитируемые статьи обсуждают эффект сил Лоренца, действующих на любую коллоидную частицу, роль кремнезема так или иначе уникальна. Кремнезем присутствует в естественной воде в форме кремневых кислотных полимеров xSiO2.yH2O, которые могут легко эволюционировать в ионное или коллоидное состояние, и в форму коллоидных частиц (SiO2)м диаметра до 1 мкм. Содержание кремнезема в воде лежит в пределах от 1 мг/л (или меньше) до 10 мг/л (или больше). В стабильном коллоидном растворе частицы кремнезема нейтральны (не активны) и имеют мицеллярную форму [24] со структурной схемой:

Коллоидные частицы кремнезема имеют значительный отрицательный заряд [18,22-24] из-за наличия (SiO3)2- анионов, возникающих благодаря диссоциации ядер поверхности. Отрицательный заряд остается неизменяемым в широком диапазоне pH, и это характерное свойство, которое отличает частицы кремнезема от других, легко перезаряжающихся коллоидных частиц. Существующий диффузионный слой содержит H+ ионы и другие положительные ионы, присутствующие в растворе (например. Ca2+, Mg2 +, ...и т.д.). В диффузионном слое также присутствуют молекулы H2O. Они могут так или иначе ориентироваться [28].

Отрицательный заряд, (revealed обнаруживаемый?) действием силы Лоренца, должен облегчить адсорбцию положительно заряженных ионов или частиц. Смещение ионов, вызванное силой Лоренца из диффузионного слоя в слой Штерна будет наибольшим для Ca- и Mg-катионов, из-за их малого отношения r/z. Согласно [16], относительное смещение (связанное с длиной диффузионного слоя) оцененного для Ca2+ и Mg2+ ионов во внутренней водопроводной воде были бы 1,9 и 3 соответственно, в MWT устройстве Bnt величина была в четыре раза меньше, чем у нашего устройства (см. Главу 2). Смещающиеся катионы остались бы адсорбированными на отрицательно заряженной поверхности коллоидной частицы в течение длительного времени [16]. Этот процесс вероятно достаточно силен, чтобы блокировать кристаллизацию Ca- и Mg- карбонатов. Таким образом, под магнитной активацией мы подразумеваем индуцированную полем модификацию диффузионного слоя, которая поддерживает адсорбцию катионов коллоидными частицами. Наши результаты показывают, что этот процесс особенно важен для коллоидного кремнезема.

Другое изменение, которое может в этом случае происходить, является увеличением вероятности коагуляции дисперсной системы. Мы знаем, что соль кремнезема и поверхность раздела воды и кремнезема представляют собой самые сложные системы [29], которые требуют для своего изучения больших предосторожностей. Несомненно, что дальнейшая экспериментальная работа желательна для количественного описания MWT противонакипного эффекта.

Наконец, позвольте нам сравнивать средние количества суспензии и отложений, извлеченных в нашем крупномасштабном эксперименте. Масса воды, текущей через каждый электрический контур была 2500 т. Среднее значение сухого остатка, остающегося после испарения 1 литра используемой воды было 0.35 г. Это дает больше чем 800 кг суспензии, которая перекачивалась каждым контуром в течение четырех месяцев. Содержание кремнезема в воде было 10 мг/л, в сумме это 25 кг кремнезема. Формирование углекислых отложений при умеренных температурах (до 300C) замедляло процесс, поскольку всего лишь 190 г кальцитовых отложений было извлечено из контура после четырех месяцев эксплуатации. Это означает, что для защиты от накипеобразования достаточно активизировать лишь малую часть кремнезема в воде.

В резюме мы представили результаты крупномасштабного эксперимента и индустриального применения магнитогидродинамической обработки воды. Благодаря значительной продолжительности и надлежащей реализации обработки обнаружился несомненный противонакипный эффект. Аморфный мягкий депозит, извлеченный из MWT был идентифицирован как обусловленный гидрозолем кремнезема. Оказалось, что кристаллизация кальцита была блокирована из-за сильной адсорбции кальция и других ионов металла на магнитным способом активизированном кремнеземе. В результате аморфные Ca-Mg гидрозоли кремнезема образовались в процессах адсорбции и коагуляции. Мы предполагаем, что коллоидный кремнезем был активизирован посредством силы Лоренца, индуцирующей конденсацию слоя Штерна, в расчете диффузионного слоя [16].

Чтобы предотвращать образование накипи в системе было необходимо активизировать только малую фракцию находящегося в воде кремнезема.

Мы хотели бы выразить нашу искреннюю благодарность команде «Energopomiar» химическому отделу в Gliwice, Польша за выполнение химических исследований и за плодотворное сотрудничество. Благодарим за помощь и доброе отношение директора и технического руководителя Laziska электростанции. Мы очень благодарны нашим коллегам, J. Sciesinski и A. Bajorek за измерения IR поглощения и рентгеновские исследования образцов. Благодарим за дополнительные измерения и обсуждения результатов с научными коллективами профессора М. Handke и профессора С. Hodorowicz.

Специальная благодарность профессору J.M.D. Coey за помощь при работе с текстом и обсуждения.


References

1. Th. Vermeiren, Corrosion Technol. 5, 215 (1958).

2. V.I. Klassen, Dokl. Akad. Nauk SU 166, 1383 (1966); Omagnicivanije vodnych sistem (in Russian) (Ed. Chimija, Moskva, 1978); in Developments in Mineral Processing (Elsevier, N.Y., 1981), Part B, Mineral Processing, p. 1077.

3. K.J. Kronenberg, IEEE Trans. Magn. 21, 2059 (1985).

4. E.F. Tebenihin, B.T. Gusev, Obrabotka vo

К-во Просмотров: 264
Бесплатно скачать Реферат: Магнитная обработка промышленных вод