Реферат: Марганцево-цинковые элементы

д) Марганцево-цинковые элементы со стабильным напряжением

В 1960-х годах были получены модификации ИДМ, позволившие создать положительный электрод со стабильным напря­жением разряда. Эти модификации (η-МпО2 ) имеют в своей структуре достаточно большое количество конституционной воды, т. е. часть атомов кислорода в решетке замещена гидроксильными группами. Эти формы двуокиси марганца имеют хо­рошие ионообменные свойства: часть протонов в кристалличес­кой решетке может замещаться на ионы цинка. Вероятно, раз­ряд положительного электрода с гидратированной двуокисью марганца первично протекает по уравнению (3). В самом на­чале разряда происходит незначительное увеличение рН и на­пряжение несколько снижается. Вскоре начинается вторичная реакция, связанная с внедрением ионов цинка в двуокись мар­ганца и образованием новой фазы — гетеролита:

MnO2 +Mn2+ +Zn2+ +2H2 O=ZnO*Mn2 O3 +4H+ (7)

В результате этой реакции подщелачивание раствора при­останавливается. Образующийся гетеролит не изоморфен с дву­окисью марганца и не образует с ней фазы переменного со­става. По этой причине потенциал положительного электрода не зависит от степени разряженности. Суммарная реакция в элементе, включающая две стадии (3) и (7), описыва­ется простым уравнением

Zn+2МnО2 = ZnО*Mn2 О3 .(8)

В ходе этой реакции состав электролита не меняется. На рис.4 приведена разрядная кривая элемента с гид­ратированной двуокисью марганца по сравнению с кривымидля обычных элементов. После начального снижения напряже­ния из-за подщелачивания электролита напряжение опять воз­растает в результате увеличения числа центров кристаллиза­ции гетеролита. В ходе дальнейшего разряда напряжение сни­жается очень медленно. Как видно, гидратированная форма приводит не только к улучшению формы разрядной кривой, но и к увеличению емкости. Достигается почти полное использо­вание первой стадии восстановления двуокиси марганца (до трехвалентной формы). Однако из-за замедленности стадии (7) такая картина наблюдается только при разряде очень малыми плотностями тока; при увеличении разрядного тока начинается параллельный процесс с образованием фазы пере­менного состава, приводящий к сдвигу потенциала. Элементы с гидратированной двуокисью марганца могут использоваться, в частности, для питания наручных электрических часов.

е) Марганцево-воздушно-цинковые элементы

Образующаяся при разряде двуокиси марганца гидроокись трехвалентного марганца МnООН может в принципе вновь ча­стично окисляться кислородом воздуха до смешанной фазы, богатой МnО2 . Поэтому свободный доступ воздуха к активной массе положительного электрода увеличивает емкость элемента. Кроме того, применяемые в агломератах углеродные материалы — сажа и графит — способны адсорбировать кислород и в какой-то мере работать как кислородные электроды. По­этому довольно широкое распространение получили смешанные марганцево-воздушно-цинковые элементы, в которых катодный процесс сводится одновременно к восстановлению двуокиси марганца и кислорода воздуха. В таких элементах в состав агломератов вводят повышенное содержание углеродных до­бавок, а сажу часто заменяют активированным углем, имею­щим очень развитую поверхность и хорошо адсорбирующим кислород. Примером такой рецептуры может быть следующая: 35—40 % двуокиси марганца, 45 % графита, 15—20 % активи­рованного угля.

В конструкции марганцево-воздушно-цинковых элементов предусматриваются специальные каналы для лучшей подачи воздуха ко всему агломерату. До начала разряда эти каналы остаются заклеенными бумагой, которую следует разрывать при включении элементов на разряд. При разряде малыми то­ками такие элементы работают преимущественно как воздуш­ные; при средних и больших токах в основном восстанавлива­ется двуокись марганца.

В варианте марганцево-воздушно-цинковых элементов вы­пускаются отдельные виды элементов и батарей для фонарей и радиоаппаратуры. В определенных режимах разряда они имеют удельную емкость, примерно вдвое превышающую удельную емкость обычных марганцево-цинковых элементов.

4. Характеристики марганцево-цинковых элементов

Разрядные характеристики марганцево-цинковых элементов зависят от состава активной массы положительного электрода и состава электролита. Типичные разрядные кривые стаканчикового элемента 373 (торговое название «Марс» или «Сатурн») при непрерывном разряде приведены на рис.5. Начальное напряжение при малых токах разряда составляет 1,6—1,65, а при больших 1,2—1,3 В. В зависимости от особенностей пи­таемой аппаратуры и от значения тока разряд ведется до ко­нечного напряжения 0,7—1,0 В.

Для марганцево-цинковых элементов характерна сильная зависимость разрядной емкости от тока; уже начиная с jр = = 0,002 емкость заметно уменьшается с ростом тока. Поэтому для этих элементов редко пользуются понятиями «номиналь­ной емкости» или «номинального тока разряда». Характери­стики каждого типа элемента оговариваются и проверяются обычно в каком-то заданном, несколько случайном режиме, связанном с одной из областей применения. Часто задается не значение тока разряда, а значение внешнего сопротивления нагрузки Rв.ц.

Как видно из рис.6 при прерывистом разряде средними и большими токами емкость марганцево-цинковых элементов увеличивается по сравнению с емкостью при непрерывном раз­ряде данным током. Если перерывы достаточно продолжи­тельны, то увеличение емкости значительно. Поэтому эти эле­менты чаще применяют в аппаратуре, работающей периодиче­ски: карманных фонарях, транзисторных приемниках, игруш­ках и т. д. Однако при прерывистом разряде малыми токами (jр <0,002) емкость заметно снижается из-за влияния самораз­ряда, вызванного коррозией цинка (нормированный ток jр везде отнесен к емкости элемента при малом разрядном токе).

Удельная энергия при непрерывном разряде небольшими токами (jр=0,002) или прерывистом разряде средними токами достигает 45—60 Вт-ч/кг, или 100—130 кВт-ч/м3 . При непре­рывном разряде большими токами (jр = 0,05-0,1) удельная энергия падает до 10 Вт-ч/кг. Марганцево-воздушно-цинковые элементы имеют более низкое начальное напряжение—1,30— 1,35 В. В случае разряда при jр = 0,001-0,002 их удельнаяэнергия составляет 80— 100 Вт-ч/кгД

Разрядные кривые элемента 373 при низких температурах представ­лены на рис.7. Как видно, даже при небольшом токе (jр = 0,002) емкость заметно уменьшается уже при температуре О °С; при температуре —40 °С она составляет только 20 % емкости при комнатной температуре. При больших токах пределом работоспособности считается температура —20 °С. При температурах ниже —20 °С обычно применяемые электролиты замерзают, поэтому в них вводят добавки, снижающие температуру замерзания. Так как эти добавки сказываются на показателях при повышенных температурах, иногда используют разные рецептуры для элемен­тов, работающих в разных температурных интервалах: хладо­стойких (от —40 до 40°С) и летних (от —20 до 60 °С).

Из-за увеличения наклона кривых напряжение – емкость по мере уве­ли­че­ния тока (рис.5) понятие эффективного внутреннего соп­ро­тив­ле­ния эле­мен­тов не является вполне оп­ре­деленным. Ориен­тировоч­но можно сказать, что нор­ми­ро­ван­ное внутреннее соп­ро­тив­ле­ние (опять отнесен­ное к ем­кос­ти при малых токах) в начале разряда при комнатной тем­пе­ратуре равно 5—10 Ом*А*ч, а при температуре 0°С увели­чивается в 2—2,5 раза. Такие значения велики по срав­не­нию со значениями для других типов ХИТ.

Номинальные характеристики марганцево-цинковых элементов от­но­ся­тся к свежеизготовленным элементам, т. е. к элементам, хранившимся с мо­мен­та изготовления не больше месяца. Сохраняемость марганцево-цинковых элементов и батарей колеблется в зависимости от размера, кон­струк­тивного вари­анта и рецептур активной массы и электролита от 3 мес до 3 лет. Во время хранения протекают процессы старения и са­мо­раз­ряда, вследствие которых емкость и напряжение разряда снижаются, а внутреннее сопротивление увеличивается. К концу гарантированного срока хранения снижение емкости составляет 30—40 %. Большое значение для сохраняемости имеет тщательность герметизации, которая уменьшает испарение воды и поступление кислорода воздуха к цин­ковому элек­тро­ду. Очень надежными в этом отно­шении являются цилин­дрические элементы в стальном корпусе.

Процессы саморазряда и старения сильно зависят от темпе­ратуры. Два-три месяца хранения в тропических условиях (на­пример, при 45 °С) счи­таются эквивалентными одному году хранения в нормальных тем­пературных условиях (20—25 °С). При низких температурах (например, при -20°С) элементы и батареи могут длительно храниться без существенного сниже­ния показателей.

К-во Просмотров: 501
Бесплатно скачать Реферат: Марганцево-цинковые элементы