Реферат: Математическая мифология

Что же получается? Плотин забыл о собственных увещаниях? - Нет. Более того, он неоднократно повторяет их вперемешку с приведенными выше рассуждениями, использующими образы единицы, точки, круга, сферы (и ее больших кругов). Кроме того, и в самих этих рассуждениях он постоянно делает оговорки: “не нужно вперять сюда мысль”, “как бы центр”, “”центр” по аналогии”, “не оттого, что душа - круг, как фигура” и многие другие. Всю же ситуацию он в конце трактата разъясняет следующим сравнением: стремящийся к постижению единого “совсем как некто, вошедший вовнутрь святилища и оставивший позади изваяния в храме, которые вышедшему из святилища опять предстают первыми после зрелища внутри и общения там не с изваянием и не с образом, а с “самим”, и которые, стало быть, оказываются последующими зрелищами. <...> Ну а эти зрелища - подобия; и потому мудрым из прорицателей они намекают, как тот бог зрится; мудрый же жрец, уразумевший намек, мог бы, оказавшись там в святилище, сделать созерцание истинным” [22, с.225].

Все становится на свои места, когда мы начинаем понимать, что для Плотина есть две математики (равно как и два отношения к чувственно воспринимаемому). Одну из них он отвергает, тогда, как другую приемлет. Это те самые две математики, которые столь настоятельно противопоставляет Платон в “Государстве” [21, с.304-315] - “торгашеская” математика и математика философская , математика сама по себе (или даже ориентированная на технические приложения и получение мирской выгоды) и математика как “подспорье и азбука” диалектики (как математическая диалектика или диалектическая математика ). Другими словами, как Платон, так и Плотин отвергают математические образы как таковые и приветствуют их в качестве элемента мифа . Подлинная математика для них - это математический миф , это те изваяния в храме, которые окружают святилище (2) .

Еще более отчетливое выражение этих же мыслей находим у Николая Кузанского, полагавшего, что именно математика “лучше всего помогает нам в понимании разнообразных Божественных истин”. Рассуждает он следующим образом: “Видимое поистине есть образ невидимого”, и Творца “можно увидеть по творению как бы в зеркале и подобии”. Если же “разыскание ведется все-таки исходя из подобий, нужно, чтобы в том образе, отталкиваясь от которого мы переносимся к неизвестному, не было по крайней мере ничего двусмысленного; ведь путь к неизвестному может идти только через заранее и несомненно известное. Но все чувственное пребывает в какой-то постоянной шаткости ввиду изобилия в нем материальной возможности. Самыми надежными и самыми для нас несомненными оказываются поэтому сущности более абстрактные, в которых мы отвлекаемся от чувственных вещей, - сущности, которые и не совсем лишены материальных опор, без чего их было бы нельзя вообразить, и не совсем подвержены текучей возможности. Таковы математические предметы”. Поэтому, “если приступить к Божественному нам дано только через символы, то всего удобнее воспользоваться математическими знаками из-за их непреходящей достоверности” [18, с.64-66].

К математической мифологии могут быть отнесены знаменитые рассуждения Николая Кузанского в “De docta ignorantia”, использующие динамические возможности геометрических фигур: шар бесконечного радиуса, центр которого везде, а периферия - нигде; многоугольник, вписанный в круг, число углов которого неограниченно увеличивается; совпадение бесконечной прямой и окружности бесконечного радиуса и т.п.

Обратим внимание, что математические конструкции, став частью мифа, начинают жить особой жизнью . Здесь могут возникать, да и в действительности возникают, рассуждения, выглядящие совершенно чудовищно для человека непривычного к подобному стилю мышления. Достаточно вспомнить уже упомянутые рассуждения Платона о правильных многогранниках, или многочисленные аргументы в пользу совершенства декады в “Теологуменах арифметики”, восходящие к Спевсиппу, а возможно и к Филолаю или даже ранним пифагорейцам [38, с.417-418].

Об особенностях соответствующего взгляда на математику мы поговорим чуть ниже, а сейчас посмотрим на некоторые более близкие и привычные для нас способы обращения с математическими конструкциями, находящиеся, тем не менее, в самом тесном родстве с математической мифологией.

2. Вырождение математической мифологии: математические

конструкции как парадигмальные схемы.

Начнем с нескольких примеров, заимствованных у Лейбница.

“Простота субстанции не препятствует множественности модификаций, которые должны совместно существовать в той же самой простой субстанции и состоять в разнообразии отношений к внешним вещам. Точно так же в центре, или точке, как она ни проста, находится бесконечное множество углов, образованных линиями, в ней встречающимися ” [15, с.404; курсив мой] (3) .

“... случай совершенного равновесия химеричен: он никогда не встречается, так как универсум нельзя разрезать или разделить на две совершенно равные и схожие части. Универсум, как эллипс или другой подобный овал (имеется в виду: в отличие от эллипса или другого подобного овала - В.Ш.), нельзя разложить посредством проведенной через центр прямой линии на две совпадающие части . Универсум не имеет центра, и его части бесконечно разнообразны; следовательно, никогда не будет случая, когда все на обеих сторонах станет одинаковым и будет производить на нас равное влияние ...” [15, с.381; курсив мой].

“Но когда я все более сосредотачивал мысль, не давая ей блуждать в тумане трудностей, мне пришла в голову своеобразная аналогия между истинами и пропорциями , которая, осветив ярким светом, все удивительным образом разъяснила. Подобно тому как во всякой пропорции меньшее число включается в большее либо равное в равное , так и во всякой истине предикат присутствует в субъекте; как во всякой пропорции, которая существует между однородными (подобными) количествами (числами), может быть проведен некий анализ равных или совпадающих и меньшее может быть отнято от большего вычитанием из большего части, равной меньшему, и подобным же образом от вычтенного может быть отнят остаток и так далее, беспрерывно вплоть до бесконечности ; точно так и в анализе истин на место одного термина всегда подставляется равнозначный ему, так что предикат разлагается на те части, которые содержатся в субъекте. Но точно так же, как в пропорциях анализ когда-то все же исчерпывается и приходит к общей мере, которая своим повторением полностью определяет оба термина пропорции, а анализ иногда может быть продолжен в бесконечность, как бывает при сопоставлении рационального и мнимого числа или стороны и диагонали квадрата , аналогично этому истины иногда бывают доказуемыми, т.е. необходимыми, а иногда - произвольными либо случайными, которые никаким анализом не могут быть приведены к тождеству, т.е. как бы к общей мере. А это и является основным различием, существующим как для пропорций, так и для истин” [15, с.316; курсив мой] (4) .

Эти три фрагмента, взятые из различных работ Лейбница, объединяет следующее: в контекст метафизического рассуждения вводятся математические фрагменты (мы выделяли их курсивом). При этом сам автор воспринимает их как “своеобразные аналогии” достаточно случайно связавшиеся в его мысли с метафизическим рассуждением. Например, еще в одном месте, Лейбниц пишет, что он мучительно размышлял “над тем, как можно совместить свободу и случайность с цепью причинной зависимости и провидением”. “Но тут вдруг - говорит он - блеснул мне некий невиданный и неожиданный свет, явившийся оттуда, откуда я менее всего ожидал его, - из математических наблюдений над природой бесконечного . Ведь для человеческого ума существует два наиболее запутанных вопроса (“два лабиринта”). Первый из них касается структуры непрерывного, или континуума, а второй - природы свободы, и возникают они из одного и того же бесконечного источника” [15, с.312-313; курсив мой].

Нетрудно увидеть связь между приведенными рассуждениями Лейбница и математическими мифами Платона и Николая Кузанского. Однако нетрудно заметить также и существенные отличия: во-первых, привлечение математики не является теперь осознанным, оправданным и систематически проводимым познавательным приемом; во-вторых, математические конструкции не обретают в этих рассуждениях особой жизни, они в готовом виде заимствуются из развитых независимо математических теорий. Здесь наблюдается как бы вырождение математического мифа, забвение им собственных корней. Внешне все как в математическом мифе, но исчезло измерение глубины, осталась лишь поверхность, утратившая свой смысл и неспособная к самостоятельной жизни и развитию.

Теперь перед нами лишь аналогия или модель, единственный смысл которой - дать наглядное представление самим по себе мало наглядным метафизическим рассуждениям. Вплетенная в метафизический контекст математическая конструкция служит здесь образцом (парадигмой) для наглядного представления метафизических отношений, предлагает для них отчетливый образ. Желая отличить подобное приложение математики от математического мифа, мы будем называть соответствующие математические конструкции - парадигмальными схемами [33, с.67; 35, с.370].

Легко заметить, что между математическим мифом и использованием математических конструкций в роли парадигмальных схем невозможно провести отчетливой демаркационной линии . В каждом конкретном случае может возникать сомнение - что перед нами? Если правильные многогранники в “Тимее” Платона - скорее математический миф, чем парадигмальная схема, а геометрические и арифметические конструкции в текстах Лейбница - vice versa, то чем является “совершенно-круглый шар” в поэме Парменида [33, с.57-59] сказать уже затруднительно. При этом у одного и того же автора наряду с полноценными математическими мифами могут встречаться и вырожденные варианты - например, уже упомянутое выше пристрастие Платона к использованию конструкций геометрической пропорции и геометрического подобия, в качестве способов организации иерархии.

Ситуация еще более осложняется тем, что недостаточная осознанность и продуманность связи между ходом метафизического рассуждения и привлекаемыми для его иллюстрации математическими аналогиями (как в случае Лейбница, лишь смутно догадывающегося о неслучайности являющихся его мысли метафизико-математических параллелей как следствии единства их “бесконечного источника”), часто приводит к тем большей неосознаваемой зависимости хода метафизического рассуждения от предстоящих мысли математических схем (как и получилось у Лейбница), иногда вплоть до подлинной математической экспансии [33, с.63-64]. Дело в том, что соответствующие математические конструкции вряд ли привносятся в метафизические рассуждения лишь post hoc, когда основной рисунок рассуждения уже сложился. Являясь на ранних стадиях формирования мысли, соответствующие математические конструкции не остаются пассивными. Наглядность этих конструкций, отчетливость математических образов, делает их, можно сказать, “навязчивыми”, определяя их активное влияние на те пути, которые избирает находящаяся в стадии становления метафизическая мысль.

Тексты Лейбница были выбраны нами в качестве примера, конечно же, не случайно. Однако, не следует думать, что они единственны в своем роде, т.е. в том как используется в них математика. Использование математических конструкций в роли парадигмальных схем - широко распространенное явление, причем не только среди философствующих математиков, таких как Лейбниц и Г.Вейль [33, с.63-64], или мыслителей, получивших хорошее математическое образование, таких как П.Флоренский [33; 35] (5) , но и у весьма далеких от математики мыслителей - например, у Вл.Соловьева [28, с.3, 20], - хотя в последнем случае набор применяемых математических конструкций по понятным причинам значительно беднее.

Еще более распространено применение разнообразных схем и диаграмм - диаграммы Эйлера-Венна, появившиеся в логике задолго до построений, связавших математическую логику и топологию; диаграммы, применяемые школой Г.П.Щедровицко- го, и язык картинок, развиваемый А.Г.Барабашевым [4]; диаграммы А.Белого [5] и т.п. Мы указали наиболее яркие примеры. Однако, всякое иллюстрирование рассуждения посредством наглядной схемы, составленной из “кружочков”, “прямоугольничков”, “стрелочек” и т.п. (см., например, рис.1 и 2 в настоящем тексте), стоит в легко заметном родстве с математическими конструкциями в роли парадигмальных схем, являясь еще более вырожденной версией математической мифологии [33, с.67-68]. Интересно, что и эти диаграммы и схемы обладают “навязчивостью” математических образов и способны вести за собой мысль (на что особо обращает внимание А.Г.Барабашев).

3. Математика как эстетический феномен и пангеометризм как

способ понимания природы математики.

В предыдущих пунктах был продемонстрирован определенный контекст, в котором могут существовать, и существуют математические конструкции. Попробуем отдать себе отчет в некоторых определяющих особенностях такого их существования.

Во-первых, обратим внимание на чисто качественный, квалитативный , подход к математическим конструкциям. Эта особенность достаточно ярко прослеживается в приведенных выше примерах.

Во-вторых, - на отсутствие необходимой связи между нематематическим предметом рассмотрения и математической конструкцией [33, с.66; 35, с.369]. Приведем соответствующий пример.

Существует целая традиция использования геометрического образа круга (окружности) для прояснения соотношения Божественных ипостасей (hypostasis), которых три при единстве сущности (oysia). Однако делаться это может несколько по-разному.

Так Николай Кузанский сравнивает Бога с максимальным кругом, у которого, в силу единственности максимума, центр, диаметр и окружность тождественны. “Ты видишь, - пишет он, - что простой и неделимый максимум целиком залегает внутри всего как бесконечный центр, что он извне всего охватывает все как бесконечная окружность и что он все пронизывает как бесконечный диаметр. Он начало всего как центр, конец всего как окружность, середина всего как диаметр. Он действующая причина как центр, формальная причина как диаметр, целевая причина как окружность. Он дарует бытие как центр, правит как диаметр, хранит как окружность, - и многое в том же роде” [18, с.83]. По-видимому, центр , дающий единство кругу, символизирует здесь Отца как единство , диаметр , как характеризующий равенство круга по всем направлениям, - Сына, как равенство единства , окружность , замыкающая и связующая круг, - Духа, как связь Отца и Сына.

Несколько по-другому у Кеплера: “Образ Триединого Бога - это сферическая поверхность; другими словами, Бог-Отец находится в центре, Бог-Сын - на наружной поверхности, а Бог-Дух Святой - в равенстве отношений между точкой и поверхностью” [2, с.62]. Вместо круга мы имеем здесь дело с шаром, а элементы, с которыми связывались Сын и Дух, поменялись местами.

Поясняя почему Бог троичен, а не четверичен, пятеричен и т.д., Николай Кузанский использует образ треугольника как простейшего из многоугольников: “четырехугольная фигура не минимальна, что очевидно, поскольку треугольник меньше ее; значит простейшему максимуму, который может совпасть только с минимумом, четырехугольник, всегда составный и потому больший минимума, подходить никак не может” [18, с.81].

Рассматривая тот же вопрос, П.А.Флоренский привлекает иной образ: он предпочитает представлять себе взаимное расположение точек на окружности. “В трех ипостасях, - пишет он, - каждая - непосредственно рядом с каждой, и отношение двух только может быть опосредствовано третьей. Среди них абсолютно немыслимо первенство. Но всякая четвертая ипостась вносит в отношение к себе первых трех тот или иной порядок и, значит, собою ставит ипостаси в неодинаковую деятельность в отношении к себе, как ипостаси четвертой” [30, с.50]. (Подробнее см. в [31, с.149-150]).

К-во Просмотров: 168
Бесплатно скачать Реферат: Математическая мифология