Реферат: Математическая мифология

Обе названные особенности существования математических конструкций в интересующем нас культурном контексте являются частными проявлениями более общей тенденции - тяготения к восприятию математики как эстетического феномена . Эстетического - в широком, первоначальном смысле этого слова - от aisthesis - чувственное восприятие (в первую очередь зрение). Греческая математика преимущественно геометрична, а в платонической традиции именно геометрия оказывалась самой “математической” из всех математических дисциплин, дисциплиной, наиболее полно воплощающей срединное положение математики между чувственным и эйдетическим [27]. Именно эстетическая сторона математики выявляет себя наиболее полно в математической мифологии.

Как мы уже отмечали, всякая специфическая область приложения математики позволяет по-новому взглянуть на математику вообще. Какую же перспективу в понимании математики открывает нам математическая мифология и работа математических конструкций в роли парадигмальных схем?

В данном аспекте ключ к пониманию природы математики наиболее естественным представляется искать, конечно же, в наиболее наглядной, “зримой”, области математики - в геометрии .

Уже Прокл отчетливо зафиксировал главную особенность геометрической мысли: она способна дать развернутое знание о своих предметах лишь с помощью воображения (phantasia), отразив их в воображаемой материи (hyle phantaston) [24]. Предмет математики не умозрителен, но и не воспринимаем чувствами. Он удивительным образом причастен и тому и другому, что Аристотель зафиксировал в парадоксальных, совмещающих главные противоположности платонической онтологии терминах hyle noete (“мыслимая материя”) и noys pathetikos (“страдательный разум”) [27]. Геометрическое воображение Прокла оказывается одновременно совмещающим в себе казалось бы несовместимое - чистую активность (noys) и чистую пассивность (hyle). Чистая мысль (noys theoretikos), овеществляясь, обращается в геометрии в noys pathetikos, а материя чувственного восприятия (hyle aisthete), очищаясь, предстает как более “тонкая” геометрическая материя (hyle noete, hyle phantaston).

Следующий важный шаг в осмыслении природы геометрической мысли делает Кант. Прокловскому различению hyle aisthete и hyle phantaston у Канта соответствует противопоставление эмпирического и чистого созерцания (reine Anschauung). Причем Кант явно называет это чистое созерцание - “пространство + время”. Здесь “пространство и время” обозначают тот универсальный фундамент, который соответствующий мысленный эксперимент обнаруживает в основе всякого нашего представления. Геометрическое мышление есть пространственно-временное конструирование , а предмет геометрии - пространство и его отношения, временная динамика пространственных конструкций [11, т.3, с.67, 76-77, 528-529].

В самом деле, в эстетическом аспекте деятельность геометра предстает как организация и переорганизация пространственных элементов во времени, а цель - изучение существующих здесь возможностей. Решая задачу из элементарной геометрии, мы проводим прямые и окружности, фиксируем их пересечения как точки. Затем исследуем устройство получившейся конфигурации: насколько “жестко” заданные условия фиксируют соответствующую “конструкцию”, сколько различных конструкций может быть “собрано” из данных элементов и т.п. Особенно важно отметить, что соединение любых двух элементов в этой деятельности непосредственно дается нам в созерцании, мы непосредственно “видим” как они “стыкуются” между собой. Доказательства же и вычисления в эстетическом аспекте предстают как сравнение и сопоставление различных элементов исследуемой конструкции.

Нарисованная картина порождает, однако, ряд вопросов и требует комментария.

Во-первых, обратим внимание на то, как проявляется в нашем простейшем случае платоническая тема срединного положения геометрической деятельности между чистой активностью и чистой пассивностью. С одной стороны, налицо активное, конструктивное начало - мы можем порождать те или иные конфигурации по собственному желанию. С другой стороны, мы не можем, например, заставить две прямые “заключать пространство”, - та среда, в которой мы разворачиваем свою конструктивную активность, имеет свои закономерности, не позволяющие нашему конструированию быть совершенно произвольным, накладывая на него свои ограничения. Эта среда обладает “косностью”, она сопротивляется формующей руке творца, эта среда материальна - актуализировать в ней можно лишь то, что допускается ее собственными потенциями. Более того, деятельность геометра, судя по всему, как раз и н?

К-во Просмотров: 169
Бесплатно скачать Реферат: Математическая мифология