Реферат: Математические методы методы
,
т.е. общее количество запасов равно общему количеству потребностей, то модель такой транспортной задачи называется закрытой.
Задачи нелинейного программирования
Общий вид. Эта задача состоит в том, чтобы определить максимальное/минимальное значение функции F от переменной f( x1 , x2 ,…, xn ) , при условии, что все переменные удовлетворяют соотношениям:
fi , gi – некоторые функции и переменные
bi – некоторое фиксированное число
Результатом решения задачи будет x=( x1 , x2 ,…, xn ) , координаты которой удовлетворяют данным соотношениям. Эти соотношения образуют системе ограничений и включают в себя условия неотрицательности переменных.
В отличии от задачи линейного программирования, функция f может быть функцией степенной (квадратной, кубической и т.д.).
Графический способ решения задачи линейного программирования:
1. Найти область допустимых решений задачи, используя систему ограничеий;
2. Построить график функций f ;
3. Определяют границы допустимых решений;
4. Находят точку области допустимых значений через которую проходит график функций f и определяют в ней значение функции.
Метод множества Лагранжа
Рассмотрим частный случай общей задачи нелинейного программирования.
Предполагается, что система ограничений содержит только уравнения, отсутствуют условия неотрицательности переменных и функции f и gi непрерывные вместе со своими частными производными.
Для решения задачи выводят набор переменных , называемых множителями Лагранжа и составляют функцию Лагранжа
Далее находят частные производные и рассматривают систему из n+ m переменных.
,
Всякое решение системы уравнений определяет точку , в которой может иметь место экстремум функции .
Алгоритм решения задачи:
1. Составить функцию Лагранжа;
2. Найти частные производные от функции Лагранжа и прировнять их к 0;
3. Решить систему уравнений, найдя точки, в которых целевая функцию может иметь экстремум;
4. Среди точек, подозрительных на экстремум находят такие, в которых достигается экстремум и находят значение функции в них.