Реферат: Математические предложения и методика их изучения
а) () и () - одновременно истинны или ложны;
б) () и () - одновременно истинны или ложны.
Высказывание p называется необходимым условием для q, если импликация () есть истинное следствие. Например, чтобы число делилось на 6, необходимо (не недостаточно), чтобы оно было чётным.
p – четное число, q – число кратно 6. Þ () – и.
Высказывание p называется достаточным условием для q, если импликация () есть истинное следствие. Например, чтобы число было кратно 5, достаточно, чтобы оно было кратно 25. (р: кратно 25; q: кратно 5) Þ(pÞq)
Замечание: Для определения необходимо условие следует подобрать контр пример, опровержение данного утверждения.
Условие р называется необходимым и достаточным для q, если истины одновременно обе импликации: (pÞq) и (qÞp), т.е. имеет место эквивалентность.
Характеристическое свойство наиболее полно определяет объект, выделяя его из некоторого множества сходных объектов, позволяет его сконструировать.
Например, характеристическое свойство арифметической прогрессии:
начиная со второго члена, все члены прогрессии удовлетворяют свойству: - быть средним арифметическим двух соседних с ним членов (или отстоять от него на равных расстояниях)
Пример необходимого и достаточного условия:
3 Методика изучения теорем
Процесс доказательства теорем и геометрии выражает связь единичных суждений (чертеж) и общих (использование общих свойств фигур) поэтому при обучении доказательствам для формирования правильного представления о проблематичном характере того или иного суждения следует применять на каждом шаге вопросы “Почему?”, “На каком основании?”
В курсе планиметрии обучение доказательствам проводится конкретно-индуктивным методом. Так как ученики в курсе геометрии, по мнению Шохор-Троцкого, занимаются преимущественно решением задач. Теоремы они доказывают только такие, которые не принадлежат к числу очевидных для них и которые не требуют слишком тонких рассуждений. Поэтому целесообразно в некоторых случаях предлагать учащимся для решения задачи абстрактного характера, подготавливающие самостоятельное формирование или доказательство теорем.
Например: установить зависимость между сторонами в треугольнике; или свойства биссектрисы угла при вершине равнобедренного треугольника эмпирически.
В процессе обучения у школьников должно быть сформировано следующее понимание термина “доказательство”:
1)допускаются истинными некоторые отношения и факты (которые составляют условие теорем);
2)от условия к заключению строится логическая последовательная цепочка предложений, каждое из них должно быть обосновано с помощью суждений, выраженных в условии, определений известных понятий, аксиом или ранее доказанных утверждений;
3)заключение является последним звеном в цепочке этих логически расположенных предложений.
Например: в курсе математики 5-6 классов этому способствуют задачи с таким содержанием: “Дополнить приведённое доказательство математических утверждений, выполняя указанные выше требования, предъявляемые к математическим доказательствам”.
“Если a:b=c, то a=bc. Доказать”
Условие: a:b=c. Заключение: a=bc.
Предложение | обоснование |
1)a:b=c 2)a=bc |
1) условие 2) почему? |
В школьном обучении некоторые фрагменты математической теории излагаются содержательно (неформально), поэтому доказательство также содержательны, т.е. в них используются обычные рассуждения, а правила логического вывода не фиксируются. Среди таких правил можно выделить:
1)правило заключения: P; “если P, то Q” - вывод: “Q”.
2)правило введения конъюнкции: P; Q – вывод “P и Q”.