Реферат: Математические предложения и методика их изучения

4)правило отрицания: “если A, то B”, “не B” - вывод “не А”.

5)правило контрапозиции: “если A, то B” - вывод “если не B, то не A”.

6)правило расширенной контрапозиции: “если A и B, то C” - вывод “если A и не С, то не B”.

7)Сведение к абсурду – “если Г, А=>B”, “Г, А=>не B” - вывод “Г=> не А”, где Г – список посылок.

Правило контрапозиции и сведение к абсурду широко применяется в косвенных доказательствах, примером которого может служить доказательство от противного.

Косвенное доказательство некоторой теоремы Т состоит в том, что исходит из отрицания Т, называемого допущением косвенного доказательства и выводят из него ложное заключение применением правила сведения к абсурду.

Например: если а||с, и b||с, то a||b. Допущение: a||c и b||c, но a не|| b. Согласно определению параллельных прямых получаем: если a не|| b => $с (сÎа Ù сÎb), поэтому по правилу введения конъюнкции: из а||c и b||c. $с (сÎа Ù сÎb) имеем: a||c и b||c и $с (сÎа Ù сÎb). Но по аксиоме параллельных прямых (из Т) неверно, что: a||c и b||c и $ с (сÎа Ù сÎb), т.е. из наших допущений вывели противоречие, которое и доказывает теорему.

Специальные формы косвенного доказательства:

1)доказательство методом исключения : надо доказать предложение: “если B, то Q1 ”, иначе: Г, Р=>Q1 : наряду с Q1 рассматриваются все остальные возможности, которые являются: аксиомой, определением, ранее доказанной теоремой или следствием из них. Затем доказывается, что каждая из остальных возможностей, кроме Q1 , ведёт к противоречию.

Например: если каждая плоскость, пересекающая прямую а, пересекает и прямую b, то эти прямые параллельны.

Требуется установить следование: “Г,Р” ®Q не ||; “Г” и "a (если a´a, a´b) Þa||b.

Исходим из предложений: Q1 :a||b; Q2 :a´b; Q3 : a-b – скрещиваются.

Допущение Q2 :a´b даёт $a (a´a и ) (достаточно провести произвольную плоскость α через b, отличную от плоскости определяемой пересекающимися прямыми a и b) или: так как $a (a´a и ) <=> не для всякой плоскости a (если a´a, то a´b), получаем “если Q2 , то ”: если a´b, то не для всякой a если a´a, то a´b).

Из “если Q2 , то ” и “Р” по правилу отрицания имеем: :.

Аналогично допущение Q3 : “a-b скрещиваются” приводит к не любой плоскости a (если a´a, то a´b) (достаточно через b и какую-нибудь точку прямой a провести плоскость). Получаем из: “если Q3 , то ” и “Р” по правилу отрицания :.

Итак, получаем и, т. е. Q2 и Q3 – неверно, поэтому верно Q1 : a||b.

2)Метод математической индукции – специальный метод доказательства, применяемый к предложениям типа: “"xÎNP(x)”, т.е. к предложениям, выражающим некоторое свойство, присущее любому натуральному числу.

Схематически полная логическое доказательство теоремы можно составить так: 1) точное понятие; 2) включаем все посылки; 3) не опускают никаких промежуточных рассуждений; 4) явно указывающее правила вывода.

В практике школьного обучения математики наиболее часто используется прямое доказательство, основанное на содержательном доказательстве в свернутом виде: 1) интуитивное понятие; 2) опускают некоторые в частности, общие посылки; 3) опускают отдельные шаги; 4) не фиксируют использование логики.

Например: Диагонали прямоугольника равны.

Теорему можно доказать: а) с помощью осевой симметрии; б) с помощью равенства прямоугольников. Отметим, что различные доказательства теоремы отличаются как математическими посылками, (используемыми в них истинными предложениями данной теории), так и логикой (используемыми правилами).

Доказательство 1.

“Если четырёхугольник – прямоугольник, то его диагонали равны” или “Если ABCD – прямоугольник, то AC=BD”.

Точка D симметрична A; B – симметрична C относительно MN (это непосредственно следует из ранее доказанной теоремы: “Серединный перпендикуляр и сторона прямоугольника являются осью симметрии). Значит, отрезок AC и DB симметричны относительно оси MN. Поэтому AC=BD.

Доказательство 2.

, т.к. они прямоугольные (), AB=CD как противоположные стороны прямоугольника; AD – общая сторона. Следовательно, AB=CD.

Методика введения теорем предполагает подготовку учащихся к восприятию ее доказательства.

1) Для того, чтобы учащиеся поняли логические части доказательства, применяют метод целесообразных задач.

Например: При доказательстве того факта, что угол между боковым ребром призмы и ее высотой равен углу между плоскостями основания и перпендикулярного сечения, необходимого предварительно решить по готовым чертежам следующие задачи:



К-во Просмотров: 431
Бесплатно скачать Реферат: Математические предложения и методика их изучения