Реферат: Математическое моделирование в сейсморазведке
§ 2.2.3. Построение моделей по данным сейсморазведки
Если на профиле нет скважин, то модель может быть построена только по сейсмическим данным. В этом случае целесообразно применять такие процедуры.
1. На основе кинематической интерпретации временного разреза строится базисная толстослоистая модель. Используемые при этом средние и пластовые скорости берутся из данных скоростного анализа, а в условиях Волго-Уральской провинции – чаще из интерполированных или экстраполированных сейсмокаротажных данных.
2. Интервал временного разреза, соответствующий моделируемому объекту, преобразуется во временной разрез волновых сопротивлений по методике псевдоакустического каротажа (ПАК).
3. В ряде точек профиля строятся одномерные модели волновых сопротивлений. Затем от волновых сопротивлений с использованием формулы s =аV b , где s – плотность, V – скорость, переходят к оценкам скорости и плотности. Полученные таким способом одномерные модели скорости целесообразно проверять на соответствие со значениями пластовых скоростей, взятыми из интерполированных или экстраполированных сейсмокаротажных данных.
4. Одномерные тонкослоистые модели наносятся на базисную толсто-слоистую модель, после чего, так же как и в предыдущем параграфе, строится комбинированная двумерная модель.
Необходимо отметить, что из-за использования только сейсмических данных, имеющих ограниченный частотный диапазон, тонкослоистую часть комбинированной модели следует рассматривать как эффективную сейсмическую модель.
Если полученные по описанным выше методикам двумерные модели предполагается использовать для интерпретации в итеративном режиме, то их целесообразно называть моделями нулевого приближения (моделями 0-приближения).
§ 2.2.4. Влияние нефтегазонасыщенности на упругие свойства пород
Сведения об изменении упругих свойств (скорости и плотности) пород-коллекторов в зависимости от типа насыщающего флюида можно получить прямым измерением в скважинах, расположенных в контуре залежи и за контуром, изучением керна при различном его насыщении, путем теоретических расчетов.
Прямые измерения в скважинах с помощью сейсмического просвечивания и СК выполнены в ограниченном объеме и полученные результаты не всегда достаточно точны. Обобщение данных показывает, что в нефтенасыщенных песчаных коллекторах при глубинах 1500–3000 м и средней пористости 20% скорость продольных волн уменьшается на 6–12%, в газонасыщенных коллекторах – на 15–30% по сравнению с водонасыщенным коллектором.
При измерениях на ультразвуковых частотах (АК) величина различия скоростей, обусловленная водо- и нефтегазонасыщенностью пород, меньше, чем на сейсмических частотах. Поэтому использование данных об уменьшении скоростей при нефтегазонасыщении, полученных на ультразвуковых частотах (в скважинах или на образцах керна), для модельных расчетов в сейсмическом диапазоне частот возможно лишь после их коррекции. Удвоение величин понижения скорости будет, по-видимому, вполне допустимым. Данных об изменении плотности при различном насыщении коллектора, которые были бы получены путем прямых измерений в скважинах, пока не имеется.
При отсутствии данных прямых измерений на керне или в скважине (или если эти данные недостаточно надежны) влияние нефтегазонасыщения на скорость и плотность может быть оценено теоретически, с помощью формул из теории распространения упругих волн в пористых средах. Для определения скорости продольных волн в сейсмическом диапазоне частот используется уравнение
, (2.1)
где U п и s п – параметры, зависящие соответственно от упругости и плотности флюида; U ск и s ск – параметры, характеризующие упругость и плотность скелета (остова) породы.
Значения U и s следующим образом выражаются через свойства твердого материала породы и насыщающего ее флюида:
1) s ск = s тв (1 – K п ), где s тв – плотность материала, слагающего твердую фазу породы, K п – пористость;
2) s п = s ф K п , где s ф – плотность флюида, т. е. плотность воды, нефти, газа или их смеси;
3) , где b ск – сжимаемость скелета (относительное изменение объема скелета при всестороннем упругом сжатии породы), G ск – модуль сдвига скелета;
4)
где b тв – сжимаемость материала, слагающего скелет породы, b ф – сжимаемость флюида, величины b тв и b ск связаны соотношением b ск = b тв + K п b п (b п – сжимаемость порового пространства).
При использовании формулы (2.1) основная трудность заключается в выборе величин b ск и G ск .
Для приближенных расчетов можно использовать уравнение среднего времени (уравнение Уилли)
, (2.2)
где V п – скорость в коллекторе, заполненном флюидом; V ск – скорость в скелете; V ф – скорость во флюиде, K п – коэффициент пористости. Формула (2.2) справедлива для хорошо сцементированных пород. Величину плотности можно оценить по уравнению
s п = s ск (1 – K п ) + s ф K п , (2.3)
где s п – плотность коллектора, заполненного флюидом, s ск – плотность скелета, s ф – плотность флюида.
Если поры заполнены несколькими компонентами, например газ–вода, нефть–вода и т. д., то имеет место уравнение
s п = s ск (1 – K п ) + s ф K п + (s в – s ф )S в K п ,