Реферат: Математическое моделирование в сейсморазведке
7) коррекция амплитуд за неидентичность условий возбуждения и приема (NORM);
8) коррекция статических поправок (SUMLAK);
9) коррекция кинематических поправок (сканирование или вертикальные спектры, KINVC);
10) автоматическая коррекция статических поправок (PAKS);
11) накапливание по ОГТ (SUMLC);
12) погоризонтный анализ скоростей (горизонтальные спектры скоростей, HORSP);
13) независимая потрассовая коррекция остаточных фазовых сдвигов в нескольких временных окнах (WINCOR);
14) когерентная фильтрация (AMCOD);
15) нуль-фазовая деконволюция по разрезу (ZEDEC);
16) широкополосная фильтрация по разрезу (FILVTX);
17) когерентная фильтрация (AMCOD);
18) миграция (MIGFK);
19) псевдоакустический каротаж (РАК).
Раздел 3.2. Выбор способа решения прямой
динамической задачи
При использовании математического моделирования для целей интерпретации сейсмических данных возникает вопрос о выборе способа вычисления теоретического волнового поля. В последнее время для двумерного моделирования получили распространение способы, основанные на лучевом приближении, и более точные способы, базирующиеся на решении дифракционного уравнения Кирхгофа или волнового уравнения в конечных разностях. Выбор способа является, прежде всего, вопросом методическим. Однако нельзя забывать и о стоимостной стороне дела, поскольку затраты машинного времени при вычислениях по точным способам, например по алгоритму Трорея – Хилтермана, для некоторых, даже не очень сложных моделей, могут быть на один-два порядка выше, чем при вычислениях в лучевом приближении. Особенно остро вопрос о выборе способа вычислений стоит при использовании моделирования в итеративном режиме, когда предполагается многократное вычисление СВР.
При выборе способа его вычисления естественно исходить из того класса сейсмологических моделей, который предопределен решаемой при интерпретации геологической задачей. Зафиксировав этот класс моделей, нужно соотнести его с наиболее существенными допущениями, на которых построены конкретные вычислительные алгоритмы. Отправными здесь являются следующие соображения. Теория распространения сейсмических волн на основе лучевых представлений геометрической сейсмики предполагает, прежде всего, абсолютную локальность сейсмических лучей, что равносильно утверждению о бесконечно малой длине волны, а также распространение энергии волны по лучу и зеркальное ее отражение в единственной точке. Согласно волновым представлениям, полная энергия сейсмическо