Реферат: Математическое программирование 2
1. Общая задача линейного программирования (ЗЛП):
Здесь (1) называется системой ограничений , ее матрица имеет ранг r £ n, (2) - функцией цели (целевой функцией). Неотрицательное решение (х1 0 , x2 0 , ... , xn 0 ) системы (1) называется допустимым решением (планом) ЗЛП. Допустимое решение называется оптимальным, если оно обращает целевую функцию (2) в min или max (оптимум).
2. Симплексная форма ЗЛП. Для решения ЗЛП симплекс - методом необходимо ее привести к определенной (симплексной) форме:
(2`) f+cr+1 xr+1 + ... + cs xs + ... + cn xn = b0 ® min
Здесь считаем r < n (система имеет бесчисленное множество решений), случай r = n неинтересен: в этом случае система имеет единственное решение и если оно допустимое, то автоматически становится оптимальным.
В системе (1`) неизвестные х1 , х2 , ... , хr называются базисными (каждое из них входит в одно и только одно уравнение с коэффициентом +1), остальные хr+1 , ... , xn - свободными. Допустимое решение (1`) называется базисным (опорным планом), если все свободные неизвестные равны 0, а соответствующее ему значение целевой функции f(x1 0 , ... , xr 0 ,0, ... ,0) называется базисным.
В силу важности особенностей симплексной формы выразим их и словами:
а) система (1`) удовлетворяет условиям :
1) все ограничения - в виде уравнений;
2) все свободные члены неотрицательны, т.е. bi ³ 0;
3) имеет базисные неизвестные;
б) целевая функция (2`) удовлетворяет условиям :
1) содержит только свободные неизвестные;
2) все члены перенесены влево, кроме свободного члена b0 ;
3) обязательна минимизация (случай max сводится к min по формуле max f = - min(-f)).
3) Матричная форма симплекс-метода. Симплексной форме ЗЛП соответствует симплекс - матрица :
1 0 ... 0 ... 0 a1,r+1 ... a1s ... a1n b1
0 1 ... 0 ... 0 a2,r+1 ... a2s ... a2n b2
.................................................................
0 0 ... 1 ... 0 ai,r+1 ... ais ... ain bi
.................................................................
0 0 ... 0 ... 1 ar,r+1 ... ars ... arn br
0 0 ... 0 ... 0 cr+1 ... cs ... cn b0
Заметим, что каждому базису (системе базисных неизвестных ) соответствует своя симплекс - матрица , базисное решение х = (b1 ,b2 , ... ,br , 0, ... ,0) и базисное значение целевой функции f(b1 ,b2 , ... ,br , 0, ... ,0) = b0 (см. Последний столбец !).
Критерий оптимальности плана . Если в последней (целевой) строке симплекс-матрицы все элементы неположительны, без учета последнего b0 , то соответствующий этой матрице план оптимален,
т.е. сj £ 0 (j = r+1, n) => min f (b1 , ... ,b2 ,0, ... ,0) = b0 .
Критерий отсутствия оптимальности. Если в симплекс-матрице имеется столбец (S-й), в котором последний элемент сs > 0, a все остальные элементы неположительны, то ЗЛП не имеет оптимального плана, т.е. сs > 0, ais £ 0 ( i= 1,r ) => min f = -¥.
Если в симплекс-матрице не выполняются оба критерия, то в поисках оптимума надо переходить к следующей матрице с помощью некоторого элемента ais > 0 и следующих преобразований (симплексных):
1) все элементы i-й строки делим на элемент a+ is ;
2) все элементы S-го столбца, кроме ais =1, заменяем нулями;
3) все остальные элементы матрицы преобразуем по правилу прямоугольника, что схематично показано на фрагменте матрицы и дано в формулах:
akl ` = akb ais - ail aks = akl - ail aks ;
ais ais
bk ` = bk ais - bi aks ; cl ` = cl ais - cs ail
ais ais
Определение . Элемент ais + называется разрешающим, если преобразование матрицы с его помощью обеспечивает уменьшение (невозрастание) значения, целевой функции; строка и столбец, на пересечении которых находится разрешающий элемент, также называются разрешающими.
--> ЧИТАТЬ ПОЛНОСТЬЮ <--