Реферат: Математика. Интегралы

1.

*1. Говорят, что функция f(x) не убывает (не возрастает) на (a,b), если для любых точек x1 <x2 из (a,b) справедливо неравенство f(x1 )£f(x2 ) (f(x1 )³f(x2 )).

*2. Говорят, что функция f(x) возрастает (убывает) на (a,b), если x1 <x2 из (a,b) справедливо неравенство f(x1 )<f(x2 ) (f(x1 )>f(x2 )). В этом случае функцию называют монотонной на (a,b).

Т1. Дифференцируемая на (a,b) функция f(x) тогда и только тогда не убывает (не возрастает) на (a,b), когда f¢(x)³0 (£0) при любом xÎ(a,b).

Док-во: 1) Достаточность. Пусть f¢(x)³0 (£0) всюду на (a,b). Рассмотрим любые x1 <x2 из (a,b). Функция f(x) дифференцируема (и непрерывна) на [x1 ,x2 ]. По теореме Лагранжа: f(x2 )-f(x1 )=(x2 -x1 )f¢(a), x1 <a<x2 . Т.к. (x2 -x1 )>0, f¢(a)³0 (£0), f(x2 )-f(x1 )³0 (£0), значит, f(x) не убывает (не возрастает) на (a,b). 2) Необходимость. Пусть, например, f(x) не убывает на (a,b), xÎ(a,b), x+DxÎ(a,b), Dx>0. Тогда (f(x+Dx)-f(x))/Dx³0. Переходя к приделу при Dx-0, получим f¢(x)³0. Теорема доказана.

Т2. Для возрастания (убывания) f(x) на (a,b) достаточно, чтобы f¢(x)>0 (<0) при любом xÎ(a,b). Док-во: Тоже что и в Т2.

Замечание1. Обратное к теореме 2 не имеет места, т.е. если f(x) возрастает (убывает) на (a,b), то не всегда f¢(x)>0 (<0) при любом xÎ(a,b).

*3. Прямая х=а называется вертикальной асимптотой графика функций y=f(x), если хотя бы одно из предельных значений или равно +¥ или –¥.

Замечание 2. Непрерывные функции вертикальных асимптот не имеют.

*4. Прямая y=kx+b называется наклонной асимптотой графика функции y=f(x) при x-+¥(–¥), если f(x)=kx+b+a(x), где

Т3. Прямая y=kx+b называется наклонной асимптотой графика функции y=f(x) при x-+¥(–¥), тогда и только тогда, когда существуют , , причем при x-+¥(–¥) наклонная асимптота называется правой (левой). Док-во: Предположим, что кривая y=f(x) имеет наклонную асимптоту y=kx+b при x-+¥, т.е. имеет место равенство f(x)=kx+b+a(x). Тогда . Переходя к пределу при x-+¥, получаем . Далее из f(x)=kx+b+a(x)-b=f(x)-kx-a(x). Переходя к пределу при x-+¥, получаем . Докажем обратное утверждение. Пусть пределы, указанные в теореме, существуют и конечны. Следовательно, f(x)–kx=b+a(x), где a(x)-0, при x-+¥(–¥). Отсюда и получаем представление f(x)=kx+b+a(x). Теорема доказана.

Замечание3. При k=0 прямая y=b называется горизонтальной асимптотой, причем при x-+¥(–¥) – правой (левой).

2.

*1. Точку х0 назовем стандартной для функции f(x), если f(x) дифференцируема в точке x0 и f¢(x0 )=0.

*2. Необходимое условие экстремума. Если функция y=f(x) имеет в точке x0 локальный экстремум, то либо x0 – стационарная точка, либо f не является дифференцируемой в точке x0 .

Замечание 1. Необходимое условие экстремума не является достаточным.

Т1. (Первое достаточное условие экстремума). Пусть y=f(x) дифференцируема в некоторой окрестности точки x0 , кроме, быть может, самой точки x0 , в которой она является непрерывной. Если при переходе x через x0 слева направо f¢(x) меняет знак с + на –, то точка x0 является точкой максимума, при перемене знака с – на + точка x0 является точкой минимума. Док-во: Пусть xÎ(a,b), x¹x0 , (a,b) – достаточно малая окрестность точки x0 . И пусть, например, производная меняет знак с + на –. Покажем что f(x0 )>f(x). По теореме Лагранжа (применительно к отрезку [x,x0 ] или [x0 ,x]) f(x)–f(x0 )=(x- x0 )f¢(a), где a лежит между x0 или x: а) x< x0 Þx- x0 <0, f¢(a)>0Þf(x)–f(x0 )<0Þf(x0 )>f(x); б) x>x0 Þx–x0 >0, f¢(a)<0Þf(x)–f(x0 )<0Þf(x0 )>f(x).

Замечание 2. Если f¢(x) не меняет знака при переходе через точку х0 , то х0 не является точкой экстремума.

Т2. (Второе достаточное условие экстремума). Пусть x0 – стационарная точка функции y=f(x), которая имеет в точке x0 вторую производную. Тогда: 1) f¢¢( x0 )>0Þf имеет в точке x0 локальный минимум. 2) f¢¢( x0 )<0Þf имеет в точке x0 локальный максимум.

3.

*1. График функции y=f(x) называется выпуклым вниз (или вогнутым вверх) в промежутке (a,b), если соответствующая дуга кривой расположена выше касательной в любой точке этой дуги.

*2. График функции y=f(x) называется выпуклым вверх (или вогнутым вниз) в промежутке (a,b), если соответствующая дуга кривой расположена ниже касательной в любой точке этой дуги.

Т1. Пусть y=f(x) имеет на (a,b) конечную 2-ю производную. Тогда: 1) f¢¢(x)>0, "xÎ(a,b)Þграфик f(x) имеет на (a,b) выпуклость, направленную вниз; 2) ) f¢¢(x)<0, "xÎ(a,b)Þграфик f(x) имеет на (a,b) выпуклость, направленную вверх

*3. Точка (c,f(с)) графика функций f(x) называется точкой перегиба, если на (a,c) и (c,b) кривая y=f(x) имеет разные направления выпуклости ((a,b) – достаточно малая окрестность точки c).

Т2. (Необходимое условие перегиба). Если кривая y=f(x) имеет перегиб в точке (c, f(c)) и функция y=f(x) имеет в точке c непрерывную вторую производную, то f¢¢(c)=0.

Замечание1. Необходимое условие перегиба не является достаточным.

Замечание2. В точке перегиба вторая производная может не существовать.

Т3. (Первое достаточное условие перегиба). Пусть y=f(x) имеет вторую производную на cÎ(a,b), f¢¢(c)=0. Если f¢¢(x) имеет на (a,c), (c,b) разные знаки, то (c, f(c)) – точка перегиба графика f(x).

Т4. (Второе условие перегиба). Если y=f(x) имеет в точке конечную третью производную и f¢¢(c)=0, а f¢¢¢(c)¹0, тогда (c, f(c)) – точка перегиба графика f(x).

--> ЧИТАТЬ ПОЛНОСТЬЮ <--

К-во Просмотров: 417
Бесплатно скачать Реферат: Математика. Интегралы